Skip to main content
Log in

Crystal-Chemical Features of a Cation-Ordered Potassium Analog of Aqualite from the Kovdor Massif (Kola Peninsula)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The chemical composition, crystal structure, and characteristics of the Raman spectrum of a highly hydrated aqualite-like mineral of the eudialyte group from the Kovdor massif (Kola Peninsula, Russia), in which potassium and hydronium group H3O+ are the species-defining extraframework cations, are studied. The simplified formula of the mineral is (H3O)8Na5K2Zr3Ca6[Si24O69(OH)3][Si2]Mn(OH)2Cl·2H2O. It is characterized by space group R3 and unit-cell parameters a = 14.184(1), c = 30.797(1) Å, V = 5366.27(1) Å3. A specific feature of this mineral, which distinguishes it from all other representatives of the eudialyte group, is a high degree of order in the distribution of large extraframework cations (Na+, K+, Sr2+, Ba2+, Ln3+, and H3O+) over split sites of the crystal structure. In the studied mineral, some oxonium ions form complexes with water molecules with extremely strong hydrogen bonds similar to those that are realized in proton hydrate complexes such as Zundel and Eigen cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Andrianov, V.I., AREN-85—a system of crystallographical programs RENTGEN for EVM NORD, SM-4 and EC, Kristallografiya, 1987, vol. 32, no. 1, pp. 228–232.

    CAS  Google Scholar 

  2. Asthagiri, D., Pratt, L.R., and Kress, J.D., Ab initio molecular dynamics and quasichemical study of H+(aq), Proc. National Acad. Sci. USA, 2005, vol. 102, pp. 6704–6708.

    Article  ADS  CAS  Google Scholar 

  3. Christy, A.G., Pekov, I.V., and Krivovichev, S.V., The distinctive mineralogy of carbonatites, Elements, 2021, vol. 17, no. 5, pp. 333–338.

    Article  ADS  CAS  Google Scholar 

  4. Chukanov, N.V., Infrared Spectra of Mineral Species: Extended Library, Dordrecht–Heidelberg–New York–London: Springer–Verlag, 2014.

  5. Chukanov, N.V., Pekov, I.V., Rastsvetaeva, R.K., Zadov, A.E., and Nedelko, V.V., Lemmleinite-Ba, Na2K2Ba1 + xTi4-[Si4O12]2(O,OH)4⋅5H2O, a new labuntsovite group mineral, Zap. Ross. Mineral. O-va, 2001, vol. 130, no. 3, pp. 36–43.

    CAS  Google Scholar 

  6. Chukanov, N.V., Kazakov, A.I., Pekov, I.V., and Grigor’eva, A.A., The kinetics of cation exchange of amorphized terskite, Russ. J. Phys. Chem. A, 2010, vol. 84, no. 12, pp. 2154–2159.

    Article  CAS  Google Scholar 

  7. Chukanov, N.V., Kazakov, A.I., Pekov, I.V., and Grigor’eva, A.L., Kinetics of cation exchange on heteroframework microporous titano- and zirconosilicates, Russ. J. Phys. Chem. B, 2011a, vol. 5, pp. 278–283.

    Article  CAS  Google Scholar 

  8. Chukanov, N.V., Tarasov, V.P., Kazakov, A.I., Chervonnaya, N.A., Vozchikova, S.A., and Pekov, I.V., Kinetics and mechanism of the leaching of sodium from A-terskite and its influence on ion-exchange properties. Russ. J. Phys. Chem. B, 2011b, vol. 5, pp. 284–289.

    Article  CAS  Google Scholar 

  9. Chukanov, N.V., Kazakov, A.I., Nedelko, V.V., Pekov, I.V., Zubkova, N.V., Ksenofontov, D.A., Kabalov, Yu.K., and Pushcharovsky, D.Yu., Kinetics and mechanisms of cation exchange and dehydration of microporous titanium and zirconium silicates, In: Minerals as Advanced Materials II, Berlin: Springer Verlag, 2012, pp. 167–179.

    Google Scholar 

  10. Chukanov, N.V., Rastsvetaeva, R.K., Rozenberg, K.A., Aksenov, S.M., Pekov, I.V., Belakovsky, D.I., Kristiansen, R., and Van, K.V., Ilyukhinite, (H3O,Na)14Ca6Mn2Zr3Si26O72(OH)2⋅3H2O, a new mineral of the eudialyte group, Geol. Ore Deposits, 2017, vol. 59, no. 7, pp. 592–600.

    Article  ADS  Google Scholar 

  11. Chukanov, N.V., Chervonnaya, N.A., Kazheva, O.N., Ermolaeva, V.N., Varlamov, D.A., and Van, K.V., Ion exchange properties of gunterblassite and gmelinite, prototypes of microporous materials for water purification, Russ. J. Appl. Chem., 2020, vol. 93, no. 4, p. 595.

    Article  CAS  Google Scholar 

  12. Chukanov, N.V., Aksenov, S.N., Pekov, I.V., Chervonnaya, N.A., Varlamov, D.A., Ermolaeva, V.N., and Britvin, S.N., Ion exchange properties of natural titanium silicate caryochroite (Na,Sr)3{(Fe,Mg)\(_{{10}}^{{2 + }}\)(OH)6[TiO(Si6O17)(OH)0.5]2}⋅8H2O with a 1D system of parallel wide channels: Experimental study and theoretical analysis of the topochemical mechanisms, Micropor. Mesopor. Mater., 2021, vol. 321, pp. 110776. PII: S1387-1811(20)30776-9.

  13. Chukanov, N.V., Vigasina, M.F., Rastsvetaeva, R.K., Aksenov, S.M., Mikhailova, J.A., and Pekov, I.V., The evidence of hydrated proton in eudialyte-group minerals based on Raman spectroscopy data, J. Raman Spectroscop., 2022, pp. 1–16.

    Book  Google Scholar 

  14. Johnsen, O. and Grice, J.D., The crystal chemistry of the eudialyte group, Can. Mineral., 1999, vol. 37, pp. 865–891.

    CAS  Google Scholar 

  15. Khomyakov, A.P., Nechelyustov, G.N., and Rastsvetaeva, R.K., Aqualite (H3O)8(Na,K,Sr)5Ca6Zr3Si26O66-(OH)9Cl, a new mineral of eudialyte-group from the alkaline Inagli massif, Saha-Yakutiya, Russia, and oxonium problem in hydrated eudialytes, Zap. Ross. Mineral. O-va, 2007, vol. 136, no. 2, pp. 39–55.

    CAS  Google Scholar 

  16. Libowitzky, E., Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals, Monatsh. Chem., 1999, vol. 130, pp. 1047–1059.

    Article  CAS  Google Scholar 

  17. Lykova, I.S., Pekov, I.V., Chukanov, N.V., Yapaskurt, V.O., Varlamov, D.A., and Zolotarev, A.A., Jr., Ion exchange in lomonosovite, murmanite and gunterblassite: experimental data, Abs. Int. Conf. Minerals as Advanced Materials III, Kirovsk, 2013, pp. 11–12.

  18. McClellan, A.L. and Pimentel, G.C., Hydrogen Bond, San Francisco: W.H.Freeman & Co Ltd, 1960.

    Google Scholar 

  19. Moiseev, M.M. and Chukanov, N.V., Mineralogy of alkaline pegmatites and hydrothermalites of the Kovdor massif, New Data on Minerals, 2006, vol. 41, pp. 56–70.

    Google Scholar 

  20. Pekov, I.V., Genetic Mineralogy and Crystal Chemistry of Rare Elements in High-Alkaline Postmagmatic Systems, Doctoral (Geol.-Min) Dissertation, Moscow: Moscow State University, 2005.

  21. Rastsvetaeva, R.K. and Chukanov, N.V., New data on the isomorphism in eudialyte-group minerals. Crystal-chemical mechanisms of blocky isomorphism at the key sites (a review), Minerals, 2020, vol. 10, p. 720.

    Article  ADS  CAS  Google Scholar 

  22. Rastsvetaeva, R.K. and Khomyakov, A.P., Structural characteristics of Na,Fe-decationized eudialyte with the symmetry R3, Crystallogr. Rept., 2002, vol. 47, no. 2, pp. 232–236.

    Article  ADS  CAS  Google Scholar 

  23. Rastsvetaeva, R.K. and Chukanov, N.V., Ikranite: Composition and structure of a new mineral of the eudialyte group. Crystallogr. Rept., 2003, vol. 48, no. 5, pp. 717–720.

    Article  ADS  CAS  Google Scholar 

  24. Rastsvetaeva, R.K. and Chukanov, N.V., Crystal chemistry of eudialyte-group minerals, Kristallographiya, 2022. V. 67.

    Google Scholar 

  25. Rastsvetaeva, R.K., Chukanov, N.V., and Aksenov, S.M., Mineraly gruppy evdialita: kristallohimiya, svojstva, genesis, (Eudialyte-Group Minerals: Crystal Chemistry, Properties, and Genesis), Nizhny Novgorod: Nizhn. Novgorod Gos. Univ., 2012.

  26. Rastsvetaeva, R.K., Viktorova, K.A., and Aksenov, S.M., New data on the isomorphism in eudialyte-group minerals. II. Refinement of the aqualite crystal structure at 110 K, Crystallogr. Rept., 2018, vol. 63, no. 6, pp. 891–896.

    Article  ADS  CAS  Google Scholar 

  27. Rastsvetaeva, R.K., Chukanov, N.V., Pekov, I.V., Schäfer, Ch., and Van, K.V., New data on the isomorphism in eudialyte-group minerals. 1. Crystal chemistry of eudialyte-group members with Na incorporated into the framework as a marker of hyperagpaitic conditions, Minerals, 2020, vol. 10, p. 587.p. 1.

  28. Rozenberg, K.A., Rastsvetaeva, R.K., and Khomyakov, A.P., Decationized and hydrated eudialytes. Oxonium problem, Eur. J. Mineral., 2005, vol. 17, pp. 875–882.

    Article  ADS  CAS  Google Scholar 

  29. Sobolewski, A.L. and Domcke, W., Hydrated hydronium: a cluster moder or solvated electron? Phys. Chem, 2002, vol. 4, pp. 4–10.

    CAS  Google Scholar 

  30. Turchkova, A.G., Pekov, I.V., Lykova, I.S., Chukanov, N.V., Yapaskurt, V.O., Delhayelite: ion leaching and ion exchange, In: Minerals as Advanced Materials II, Berlin: Springer Verlag, 2012, pp. 221–228.

    Google Scholar 

  31. Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Turchkova, A.G., Lykova, I.S., Schuller, W., Ternes, B., and Pushcharovsky, D.Yu., Crystal chemistry of a Ba-dominant analogue of hydrodelhayelite and natural ion-exchange transformations in double- and triple-layer phyllosilicates in post-volcanic systems of the Eifel region, Germany, Mineral. Petrol., 2016, vol. 110, pp. 885–893.

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. K. Rastsvetaeva or N. V. Chukanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mukhortova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastsvetaeva, R.K., Chukanov, N.V., Pekov, I.V. et al. Crystal-Chemical Features of a Cation-Ordered Potassium Analog of Aqualite from the Kovdor Massif (Kola Peninsula). Geol. Ore Deposits 65, 754–764 (2023). https://doi.org/10.1134/S1075701523070085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701523070085

Keywords:

Navigation