Skip to main content
Log in

Genetics and metabolic responses of Artemisia annua L to the lake of phosphorus under the sparingly soluble phosphorus fertilizer: evidence from transcriptomics analysis

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The medicinal herb Artemisia annua L. is prized for its capacity to generate artemisinin, which is used to cure malaria. Potentially influencing the biomass and secondary metabolite synthesis of A. annua is plant nutrition, particularly phosphorus (P). However, most soil P exist as insoluble inorganic and organic phosphates, which results to low P availability limiting plant growth and development. Although plants have developed several adaptation strategies to low P levels, genetics and metabolic responses to P status remain largely unknown. In a controlled greenhouse experiment, the sparingly soluble P form, hydroxyapatite (Ca5OH(PO4)3/CaP) was used to simulate calcareous soils with low P availability. In contrast, the soluble P form KH2PO4/KP was used as a control. A. annua’s morphological traits, growth, and artemisinin concentration were determined, and RNA sequencing was used to identify the differentially expressed genes (DEGs) under two different P forms. Total biomass, plant height, leaf number, and stem diameter, as well as leaf area, decreased by 64.83%, 27.49%, 30.47%, 38.70%, and 54.64% in CaP compared to KP; however, LC–MS tests showed an outstanding 37.97% rise in artemisinin content per unit biomass in CaP contrary to KP. Transcriptome analysis showed 2015 DEGs (1084 up-regulated and 931 down-regulated) between two P forms, including 39 transcription factor (TF) families. Further analysis showed that DEGs were mainly enriched in carbohydrate metabolism, secondary metabolites biosynthesis, enzyme catalytic activity, signal transduction, and so on, such as tricarboxylic acid (TCA) cycle, glycolysis, starch and sucrose metabolism, flavonoid biosynthesis, P metabolism, and plant hormone signal transduction. Meanwhile, several artemisinin biosynthesis genes were up-regulated, including DXS, GPPS, GGPS, MVD, and ALDH, potentially increasing artemisinin accumulation. Furthermore, 21 TF families, including WRKY, MYB, bHLH, and ERF, were up-regulated in reaction to CaP, confirming their importance in P absorption, internal P cycling, and artemisinin biosynthesis regulation. Our results will enable us to comprehend how low P availability impacts the parallel transcriptional control of plant development, growth, and artemisinin production in A. annua. This study could lay the groundwork for future research into the molecular mechanisms underlying A. annua’s low P adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found at BIG Sub, accession number: PRJAC012205.

References

  • Aftab T, Khan MMA, Ferreira JFS (2014) Effect of Mineral Nutrition, Growth Regulators and Environmental Stresses on Biomass Production and Artemisinin Concentration of Artemisia annua L. In: Aftab T, Ferreira J, Khan M, Naeem M (eds) Artemisia annua - Pharmacology and Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41027-7_10

    Chapter  Google Scholar 

  • Amarasinghe T, Madhusha C, Munaweera I, Kottegoda N (2022) Review on mechanisms of phosphate solubilization in rock phosphate fertilizer. Commun Soil Sci Plant Anal 53(8):944–960

    Article  CAS  Google Scholar 

  • Augusto L, Achat DL, Jonard M, Vidal D, Ringeval B (2017) Soil parent material—a major driver of plant nutrient limitations in terrestrial ecosystems. Glob Change Biol 23(9):3808–3824

    Article  ADS  Google Scholar 

  • Baraldi R, Isacchi B, Predieri S, Marconi G, Vincieri FF, Bilia AR (2008) Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth. Biochem Syst Ecol 36(5–6):340–348

    Article  CAS  Google Scholar 

  • Behera B, Singdevsachan SK, Mishra R, Dutta S, Thatoi H (2014) Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove—a review. Biocatal Agric Biotechnol 3(2):97–110

    Article  Google Scholar 

  • Bhattacharya A (2019) Changing environmental condition and phosphorus-use efficiency in plants. Changing climate and resource use efficiency in plants, 241–305. https://doi.org/10.1016/C2017-0-04681-5

  • Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Tc M et al (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25(8):2944–2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Catalá R, Medina J, Salinas J (2011) Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proc Natl Acad Sci 108(39):16475–16480

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Chang W-C, Song H, Liu H-W, Liu P (2013) Current development in isoprenoid precursor biosynthesis and regulation. Curr Opin Chem Biol 17(4):571–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao L-M, Liu Y-Q, Chen D-Y, Xue X-Y, Mao Y-B, Chen X-Y (2017) Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Mol Plant 10(5):735–748

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ye G, Zhang L, Wang Y, Zhang X, Chen D (2007) Effect of trans-Bacillus thuringiensis gene on gibberellic acid and zeatin contents and boll development in cotton. Field Crop Res 103(1):5–10

    Article  Google Scholar 

  • Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Ciereszko I, Johansson H, Hurry V, Kleczkowski LA (2001) Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212:598–605

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang Y, Yang A, Zhang W-H (2012) OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice. Plant Physiol 159(1):169–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Mashiguchi K, Chen Q, Kasahara H, Kamiya Y, Ojha S et al (2013) The biochemical mechanism of auxin biosynthesis by an Arabidopsis YUCCA flavin-containing monooxygenase. J Biol Chem 288(3):1448–1457

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Wang Y, Zhang W-H (2016) OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67(3):947–960

    Article  CAS  PubMed  Google Scholar 

  • Del-Saz NF, Romero-Munar A, Cawthray GR, Palma F, Aroca R, Baraza E et al (2018) Phosphorus concentration coordinates a respiratory bypass, synthesis and exudation of citrate, and the expression of high-affinity phosphorus transporters in Solanum lycopersicum. Plant, Cell Environ 41(4):865–875

    Article  CAS  PubMed  Google Scholar 

  • Dilshad E, Cusido RM, Palazon J, Estrada KR, Bonfill M, Mirza B (2015) Enhanced artemisinin yield by expression of rol genes in Artemisia annua. Malar J 14(1):1–10

    Article  Google Scholar 

  • Ding W, Wang Y, Fang W, Gao S, Li X, Xiao K (2016) TaZAT8, a C2H2-ZFP type transcription factor gene in wheat, plays critical roles in mediating tolerance to Pi deprivation through regulating P acquisition, ROS homeostasis and root system establishment. Physiol Plant 158:297–311

    Article  CAS  PubMed  Google Scholar 

  • Du Q, Wang K, Xu C, Zou C, Xie C, Xu Y, Li WX (2016) Strand-specific RNA-Seq transcriptome analysis of genotypes with and without low-phosphorus tolerance provides novel insights into phosphorus-use efficiency in maize. BMC Plant Biol 16:222

    Article  PubMed  PubMed Central  Google Scholar 

  • Duan K, Yi K, Dang L, Huang H, Wu W, Wu P (2008) Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J 54(6):965–975

    Article  CAS  PubMed  Google Scholar 

  • El-Sappah AH, Elrys AS, Desoky E-SM, Zhao X, Bingwen W, El-Sappah HH et al (2021b) Comprehensive genome wide identification and expression analysis of MTP gene family in tomato (Solanum lycopersicum) under multiple heavy metal stress. Saudi J Biol Sci 28(12):6946–6956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sappah AH, Abbas M, Rather SA, Wani SH, Soaud N, Noor Z et al (2023) Genome-wide identification and expression analysis of metal tolerance protein (MTP) gene family in soybean (Glycine max) under heavy metal stress. Mol Biol Rep 50(4):2975–2990. https://doi.org/10.1007/s11033-022-08100-x

    Article  CAS  PubMed  Google Scholar 

  • El-Sappah AH, Elbaiomy RG, Elrys AS, Wang Y, Zhu Y, Huang Q, Yan K, Xianming Z, Abbas M, El-Tarabily KA, Li J (2021a). Genome-wide identification and expression analysis of metal tolerance protein gene family in Medicago truncatula under a broad range of heavy metal stress. Front Genet 12:713224. https://doi.org/10.3389/fgene.2021.713224

  • Fei H, Ellis BE, Vessey JK (2014) Carbon partitioning in tissues of a gain-of-function mutant (MYB75/PAP1-D) and a loss-of-function mutant (myb75-1) in Arabidopsis thaliana. Botany 92(2):93–99

    Article  CAS  Google Scholar 

  • Fredeen AL, Raab TK, Rao IM, Terry N (1990) Effects of phosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta 181:399–405

    Article  CAS  PubMed  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW et al (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279:499–507

    Article  CAS  PubMed  Google Scholar 

  • Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ et al (2008) sparse inflorescence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci 105(39):15196–15201

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Giles CD, Hsu P-CL, Richardson AE, Hurst MR, Hill JE (2014) Plant assimilation of phosphorus from an insoluble organic form is improved by addition of an organic anion producing Pseudomonas sp. Soil Biol Biochem 68:263–269

    Article  CAS  Google Scholar 

  • Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ (2005) Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc Natl Acad Sci U S A 102(28):9760–9765. https://doi.org/10.1073/pnas.0503277102

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H et al (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37(4):626–634

    Article  CAS  PubMed  Google Scholar 

  • Hammond JP, Bennett MJ, Bowen HC, Broadley MR, Eastwood DC, May ST et al (2003) Changes in gene expression in Arabidopsis shoots during phosphate starvation and the potential for developing smart plants. Plant Physiol 132(2):578–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237(2):173–195

    Article  CAS  Google Scholar 

  • Hou Z, Yin J, Lu Y, Song J, Wang S, Wei S et al (2019) Transcriptomic analysis reveals the temporal and spatial changes in physiological process and gene expression in common buckwheat (Fagopyrum esculentum Moench) grown under drought stress. Agronomy 9(10):569

    Article  CAS  Google Scholar 

  • Hu Y, Ye X, Shi L, Duan H, Xu F (2010) Genotypic differences in root morphology and phosphorus uptake kinetics in Brassica napus under low phosphorus supply. J Plant Nutr 33(6):889–901

    Article  CAS  Google Scholar 

  • Hürlimann HC, Pinson B, Stadler-Waibel M, Zeeman SC, Freimoser FM (2009) The SPX domain of the yeast low-affinity phosphate transporter Pho90 regulates transport activity. EMBO Rep 10(9):1003–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Jalali M, Jalali M (2020) Effect of organic and inorganic phosphorus fertilizers on phosphorus availability and its leaching over incubation time. Environ Sci Pollut Res 27(35):44045–44058

    Article  CAS  Google Scholar 

  • Ji Y, Xiao J, Shen Y, Ma D, Li Z, Pu G et al (2014) Cloning and characterization of AabHLH1, a bHLH transcription factor that positively regulates artemisinin biosynthesis in Artemisia annua. Plant Cell Physiol 55(9):1592–1604

    Article  CAS  PubMed  Google Scholar 

  • Kim T-W, Guan S, Sun Y, Deng Z, Tang W, Shang J-X et al (2009) Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat Cell Biol 11(10):1254–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumari K, Phogat VK (2008) Rock phosphate: its availability and solubilization in the soil – a review. Agric Rev 29:108–116

    Google Scholar 

  • Kvakić M, Tzagkarakis G, Pellerin S, Ciais P, Goll D, Mollier A et al (2020) Carbon and phosphorus allocation in annual plants: an optimal functioning approach. Front Plant Sci 11:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambers H (2022) Phosphorus acquisition and utilization in plants. Annu Rev Plant Biol 73:17–42

    Article  CAS  PubMed  Google Scholar 

  • Lee K-K, Mok I-K, Yoon M-H, Kim H-J, Chung D-Y (2012) Mechanisms of phosphate solubilization by PSB (phosphate-solubilizing bacteria) in soil. Korean J Soil Sci Fert 45(2):169–176

    Article  CAS  Google Scholar 

  • Li X, Luo L, Yang J, Li B, Yuan H (2015) Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2. Appl Biochem Biotechnol 175:2755–2768

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129(1):244–256

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu X, Zhang L, Zhang F, Jiang W, Shen Q, Zhang L et al (2013) AaORA, a trichome-specific AP 2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytol 198(4):1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Chu S, Sun C, Xu H, Zhang J, Jiao Y, Zhang D (2020) Genome-wide identification of low phosphorus responsive microRNAs in two soybean genotypes by high-throughput sequencing. Funct Integr Genomics 20:825–838

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Wang H, Lu X, Li H, Liu B, Xu G (2007) Analysis of Artemisia annua L. volatile oil by comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J Chromatogr A 1150(1–2):50–53

    Article  CAS  PubMed  Google Scholar 

  • Malhotra H, Vandana, Sharma S, Pandey R (2018) Phosphorus nutrition: plant growth in response to deficiency and excess. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant Nutrients and Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_7

  • Martinez V, Mestre TC, Rubio F, Girones-Vilaplana A, Moreno DA, Mittler R, Rivero RM (2016) Accumulation of flavonols over hydroxycinnamic acids favors oxidative damage protection under abiotic stress. Front Plant Sci 7:838. https://doi.org/10.3389/fpls.2016.00838

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathelier A, Fornes O, Arenillas DJ, Chen C-Y, Denay G, Lee J et al (2016) JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 44(D1):D110–D115

    Article  CAS  PubMed  Google Scholar 

  • Matías-Hernández L, Jiang W, Yang K, Tang K, Brodelius PE, Pelaz S (2017) AaMYB 1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. Plant J 90(3):520–534

    Article  PubMed  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R et al (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci 102(33):11934–11939

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Mudge SR, Rae AL, Diatloff E, Smith FW (2002) Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. Plant J 31(3):341–353

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Brandes D (1997) Growth and development of Artemisia annua L. on different soil types. Verh-Ges Fur Okologie 27:453–460

    Google Scholar 

  • Muneer S, Jeong BR (2015) Proteomic analysis provides new insights in phosphorus homeostasis subjected to Pi (inorganic phosphate) starvation in tomato plants (Solanum lycopersicum L.). PLoS One 10(7):e0134103

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T et al (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77(3):367–379

    Article  CAS  PubMed  Google Scholar 

  • Natr L (1992) Mineral nutrients-a ubiquitous stress factor for photosynthesis. Photosynthetica (Czech Republic) 27:3

    Google Scholar 

  • Nilsson L, Müller R, Nielsen TH (2007) Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, Cell Environ 30(12):1499–1512

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Hayashi Ki, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y et al (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77(3):352–366

    Article  CAS  PubMed  Google Scholar 

  • Pacifici E, Polverari L, Sabatini S (2015) Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66(4):1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D et al (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528–532

    Article  ADS  CAS  PubMed  Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci 99(20):13324–13329

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearse SJ, Veneklaas EJ, Cawthray G, Bolland MD, Lambers H (2007) Carboxylate composition of root exudates does not relate consistently to a crop species’ ability to use phosphorus from aluminium, iron or calcium phosphate sources. New Phytol 173(1):181–190

    Article  CAS  PubMed  Google Scholar 

  • Plaxton WC (2004) Plant response to stress: biochemical adaptations to phosphate deficiency. Encyclopedia of plant and crop science. Marcel Dekker, New York, pp 976–980

    Google Scholar 

  • Qiu J, Israel DW (1992) Diurnal starch accumulation and utilization in phosphorus-deficient soybean plants. Plant Physiol 98(1):316–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Annu Rev Plant Biol 50(1):665–693

    Article  CAS  Google Scholar 

  • Ravera S, Virkki LV, Murer H, Forster IC (2007) Deciphering PiT transport kinetics and substrate specificity using electrophysiology and flux measurements. Am J Physiol Cell Physiol 293(2):C606–C620

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Gray WM (2015) SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol Plant 8(8):1153–1164

    Article  CAS  PubMed  Google Scholar 

  • Ren P, Meng Y, Li B, Ma X, Si E, Lai Y et al (2018) Molecular mechanisms of acclimatization to phosphorus starvation and recovery underlying full-length transcriptome profiling in barley (Hordeum vulgare L.). Front Plant Sci 9:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2015) Breaking new ground in the regulation of the early steps of plant isoprenoid biosynthesis. Curr Opin Plant Biol 25:17–22

    Article  PubMed  Google Scholar 

  • Rouached H, Arpat AB, Poirier Y (2010) Regulation of phosphate starvation responses in plants: signaling players and cross-talks. Mol Plant 3(2):288–299

    Article  CAS  PubMed  Google Scholar 

  • Ryan P, Delhaize E, Jones D (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Biol 52(1):527–560

    Article  CAS  Google Scholar 

  • Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD et al (2012) The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol 193(4):842–851

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Rengel Z, Tang C, Zhang F (2003) Role of phosphorus nutrition in development of cluster roots and release of carboxylates in soil-grown Lupinus albus. Plant Soil 248:199–206

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X et al (2011) Focus issue on phosphorus plant physiology: phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Q, Yan T, Fu X, Tang K (2016) Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L. Sci Bull 61:18–25

    Article  CAS  Google Scholar 

  • Shi M-Z, Xie D-Y (2014) Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol 8(1):47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi P, Fu X, Shen Q, Liu M, Pan Q, Tang Y et al (2018) The roles of Aa MIXTA 1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytol 217(1):261–276

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wang N, Zhou H, Xu Q, Yan G (2020) Transcriptome analyses provide insights into the homeostatic regulation of axillary buds in upland cotton (G. hirsutum L.). BMC Plant Biol 20:1–14

    Article  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Souret FF, Kim Y, Wyslouzil BE, Wobbe KK, Weathers PJ (2003) Scale-up of Artemisia annua L. hairy root cultures produces complex patterns of terpenoid gene expression. Biotechnol Bioeng 83(6):653–667

    Article  CAS  PubMed  Google Scholar 

  • Stringham RW, Moore GL, Teager DS, Yue TY (2018) Analysis and isolation of potential artemisinin precursors from Waste streams of Artemisia annua extraction. ACS omega 3(7):7803–7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suen PK, Zhang S, Sun SS-M (2015) Molecular characterization of a tomato purple acid phosphatase during seed germination and seedling growth under phosphate stress. Plant Cell Rep 34:981–992

    Article  CAS  PubMed  Google Scholar 

  • Tafvizi F, Farahanei F, Sheidai M, Nejadsattari T (2009) Effects of zeatin and activated charcoal in proliferation of shoots and direct regeneration in cotton (Gossypium hirsutum L.). Afr J Biotechnol 8(22):6220

    Article  CAS  Google Scholar 

  • Tan H, Xiao L, Gao S, Li Q, Chen J, Xiao Y et al (2015) Trichome and artemisinin regulator 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Mol Plant 8(9):1396–1411

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Caldararu S, Engel J, Kern M, Pallandt M, Schnur R et al (2019) A new terrestrial biosphere model with coupled carbon, nitrogen, and phosphorus cycles (QUINCY v1. 0; revision 1772). Geosci Model Dev Discuss 2019:1–38

    Google Scholar 

  • Todeschini V, Anastasia F, Massa N, Marsano F, Cesaro P, Bona E et al (2022) Impact of phosphatic nutrition on growth parameters and artemisinin production in Artemisia annua plants inoculated or not with Funneliformis mosseae. Life 12(4):497

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran HT, Hurley BA, Plaxton WC (2010) Feeding hungry plants: the role of purple acid phosphatases in phosphate nutrition. Plant Sci 179(1–2):14–27

    Article  CAS  Google Scholar 

  • Uhde-Stone C, Zinn KE, Ramirez-Yáñez M, Li A, Vance CP, Allan DL (2003) Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Plant Physiol 131(3):1064–1079. https://doi.org/10.1104/pp.102.016881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usuda H, Shimogawara K (1992) Phosphate deficiency in maize: III. Changes in enzyme activities during the course of phosphate deprivation. Plant Physiol 99(4):1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157(3):423–447

    Article  CAS  PubMed  Google Scholar 

  • Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC et al (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195(2):306–320

    Article  CAS  PubMed  Google Scholar 

  • Vicca S, Stocker BD, Reed S, Wieder WR, Bahn M, Fay PA et al (2018) Using research networks to create the comprehensive datasets needed to assess nutrient availability as a key determinant of terrestrial carbon cycling. Environ Res Lett 13(12):125006

    Article  ADS  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20(1):5–15

    Article  PubMed  Google Scholar 

  • Vranová E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  PubMed  Google Scholar 

  • Wan L-Y, Qi S-S, Dai Z-C, Zou CB, Song Y-G, Hu Z-Y et al (2018) Growth responses of Canada goldenrod (Solidago canadensis L.) to increased nitrogen supply correlate with bioavailability of insoluble phosphorus source. Ecol Res 33:261–269

    Article  CAS  Google Scholar 

  • Wang C, Ying S, Huang H, Li K, Wu P, Shou H (2009) Involvement of OsSPX1 in phosphate homeostasis in rice. Plant J 57(5):895–904

    Article  ADS  CAS  PubMed  Google Scholar 

  • Wang Y, Law R, Pak B (2010) A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 7(7):2261–2282

    Article  ADS  CAS  Google Scholar 

  • Wang L, Lu S, Zhang Y, Li Z, Du X, Liu D (2014) Comparative genetic analysis of Arabidopsis purple acid phosphatases AtPAP10, AtPAP12, and AtPAP26 provides new insights into their roles in plant adaptation to phosphate deprivation. J Integr Plant Biol 56(3):299–314. https://doi.org/10.1111/jipb.12184

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Huang W, Ying Y, Li S, Secco D, Tyerman S et al (2012) Functional characterization of the rice SPX-MFS family reveals a key role of OsSPX-MFS1 in controlling phosphate homeostasis in leaves. New Phytol 196(1):139–148

    Article  CAS  PubMed  Google Scholar 

  • Wasaki J, Yamamura T, Shinano T, Osaki M (2003a) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 248:129–136

    Article  CAS  Google Scholar 

  • Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F et al (2003b) Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant, Cell Environ 26(9):1515–1523

    Article  CAS  Google Scholar 

  • Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F et al (2006) Transcriptomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57(9):2049–2059

    Article  CAS  PubMed  Google Scholar 

  • Weathers PJ, Elkholy S, Wobbe KK (2006) Artemisinin: the biosynthetic pathway and its regulation in Artemisia annua, a terpenoid-rich species. In Vitro Cell Dev Biol-Plant 42:309–317

    Article  CAS  Google Scholar 

  • Wieder WR, Cleveland CC, Smith WK, Todd-Brown K (2015) Future productivity and carbon storage limited by terrestrial nutrient availability. Nat Geosci 8(6):441–444

    Article  ADS  CAS  Google Scholar 

  • Williamson LC, Ribrioux SP, Fitter AH, Leyser HO (2001) Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol 126(2):875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F et al (2003) Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiol 132(3):1260–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16(2):205–212

    Article  CAS  PubMed  Google Scholar 

  • Xiang L, Zhu S, Zhao T, Zhang M, Liu W, Chen M et al (2015) Enhancement of artemisinin content and relative expression of genes of artemisinin biosynthesis in Artemisia annua by exogenous MeJA treatment. Plant Growth Regul 75:435–441

    Article  CAS  Google Scholar 

  • Xie D-Y, Ma D-M, Judd R, Jones AL (2016) Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives. Phytochem Rev 15:1093–1114

    Article  CAS  Google Scholar 

  • Xu Q, Yin XR, Zeng JK, Ge H, Song M, Xu CJ, Li X, Ferguson IB, Chen KS (2014) Activator- and repressor-type MYB transcription factors are involved in chilling injury induced flesh lignification in loquat via their interactions with the phenylpropanoid pathway. J Exp Bot 65:4349–4359. https://doi.org/10.1093/jxb/eru208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143(3):1362–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WT, Baek D, Yun D-J, Hwang WH, Park DS, Nam MH et al (2014) Overexpression of OsMYB4P, an R2R3-type MYB transcriptional activator, increases phosphate acquisition in rice. Plant Physiol Biochem 80:259–267

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Xie M-Y, Yang X-L, Liu B-H, Lin H-H (2019) Phosphoproteomic profiling reveals the importance of CK2, MAPKs and CDPKs in response to phosphate starvation in rice. Plant Cell Physiol 60(12):2785–2796

    Article  CAS  PubMed  Google Scholar 

  • Yu Z-X, Li J-X, Yang C-Q, Hu W-L, Wang L-J, Chen X-Y (2012) The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosynthesis in Artemisia annua L. Mol Plant 5(2):353–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Nowak G, Reed DW, Covello PS (2011) The production of artemisinin precursors in tobacco. Plant Biotechnol J 9(4):445–454

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Liu H, Tao P, Chen H (2014) Comparative proteomic analyses provide new insights into low phosphorus stress responses in maize leaves. PLoS ONE 9(5):e98215

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Fu X, Lv Z, Lu X, Shen Q, Zhang L et al (2015) A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Mol Plant 8(1):163–175

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-B, Guo L-P, Qiu Z-D, Qu X-B, Wang H, Jing Z-X et al (2017) Analysis of spatial distribution of artemisinin in Artemisia annua in China Zhongguo Zhong yao za zhi= Zhongguo Zhongyao Zazhi= China. J Chin Mater Med 42(22):4277–4281

    Google Scholar 

  • Zhou Z, Tan H, Li Q, Li Q, Wang Y, Bu Q et al (2020) Trichome and artemisinin regulator 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytol 228(3):932–945

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 82360753), the Guangxi Major Science and Technology Project of China (Grant No. GuikeAA22096021), the Natural Science Foundation of Guangxi Province (Grant No. 2023GXNSFAA026330), the Innovative Team for Traditional Chinese Medicinal Materials Quality of Guangxi (Grant No. GZKJ2305), the Scientific Research Funding Project of Guangxi Botanical Garden of Medicinal Plants (Grant No. GYJ202013), the Research and Innovation Team Building Project of Guangxi Botanical Garden of Medicinal Plants (Grant No. GYCH2019008), National Natural Science Foundation of China (Grant No. 81560623), the Key Laboratory Construction Program of Guangxi Health commission (Grant No. ZJC2020003), and the Key Techniques Research and Promotion of Guangxi Medicinal Materials Varieties (Grant No. GZKJ2314).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: LW, JH, WS, QH, SW, and AE-S. Designed the experiments: LW, IJ, and SW. Performed the experiments: LR, JH, WH, and LD. Analyzed the results: LW, JH, QH, and AE-S. Draw the figures: AE-S, LW, and QH. Contributed reagents/materials: LW, LS, JH, ZZ, LP, and JF. Contributed to writing the original manuscript draft: LW, QH, and AE-S. Review and editing of the manuscript: AE-S, HQ, RE, SS, RMYH, SAS, MAAE, and MA. Writing final copy: AE-S. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Shugen Wei or Ahmed H. El- Sappah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Huo, J., Huang, Q. et al. Genetics and metabolic responses of Artemisia annua L to the lake of phosphorus under the sparingly soluble phosphorus fertilizer: evidence from transcriptomics analysis. Funct Integr Genomics 24, 26 (2024). https://doi.org/10.1007/s10142-024-01301-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-024-01301-6

Keywords

Navigation