Skip to main content
Log in

Competitive effects between gravitational radiation and mass variation for two-body systems in circular orbits

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This work provides, at lower order, general analytical solutions for the orbital separation, merging time, and orbital frequency of binary systems emitting gravitational waves while being submitted to mass variations. Specific features, depending on the exponent of the mass derivative, are investigated in details. Two phenomenologically interesting cases are explicitly considered: (i) binaries formed by two light primordial black holes submitted to Hawking evaporation and (ii) bodies driven by a Bondi accretion of phantom dark energy. It is shown that three different regimes arise, including an intricate non-monotonic behaviour of the system. We study subtle imprints that could be associated with those phenomena. A careful analysis of the conditions of validity of the different hypotheses performed is finally carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Unlike post-Newtonian expansions, in which the development is based on a combination of powers of the velocity and of the gravitational constant, in the post-Minkowskian case, the developments are using only the gravitational constant, allowing the analysis to be carried out even at relativistic velocities.

References

  1. Duerr, P.M.: It ain’t necessarily so: gravitational waves and energy transport. Stud. Hist. Philos. Sci. B 65, 25 (2019). https://doi.org/10.1016/j.shpsb.2018.08.005

    Article  MathSciNet  Google Scholar 

  2. Gomes, H., Rovelli, C.: On the analogies between gravitational and electromagnetic radiative energy (2023). arXiv:2303.14064 [physics.hist-ph]

  3. Abbott, R., et al.: GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run(LIGO Scientific, Virgo). Phys. Rev. X 11, 021053 (2021). https://doi.org/10.1103/PhysRevX.11.021053. arXiv:2010.14527 [gr-qc]

    Article  CAS  Google Scholar 

  4. Abbott, R., et al.: GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run (LIGO Scientific. VIRGO, KAGRA) (2021). arXiv:2111.03606 [gr-qc]

  5. Holgado, M., Ricker, P.: Gravitational radiation from close binaries with time-varying masses. Astrophys. J. 882, 39 (2019). https://doi.org/10.3847/1538-4357/ab3293

    Article  CAS  ADS  Google Scholar 

  6. Barausse, E., Cardoso, V., Pani, P.: Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89, 104059 (2014). https://doi.org/10.1103/PhysRevD.89.104059. arXiv:1404.7149 [gr-qc]

    Article  CAS  ADS  Google Scholar 

  7. Mersini-Houghton, L., Kelleher, A.: Investigating dark energy with black hole binaries. Nucl. Phys. B Proc. Suppl. 194, 272 (2009). https://doi.org/10.1016/j.nuclphysbps.2009.07.091

    Article  CAS  ADS  Google Scholar 

  8. Enander, J., Mörtsell, E.: On the use of black hole binaries as probes of local dark energy properties. Phys. Lett. B 683, 7 (2010). https://doi.org/10.1016/j.physletb.2009.11.057

    Article  CAS  ADS  Google Scholar 

  9. Neill, S.M.O., Miller, M.C., Bogdanovic, T., Reynolds, C.S., Schnittman, J.: Reaction of accretion disks to abrupt mass loss during binary black hole merger. Astrophys. J. 700, 859 (2009). https://doi.org/10.1088/0004-637X/700/1/859. arXiv:0812.4874 [astro-ph]

    Article  ADS  Google Scholar 

  10. Macedo, C.F.B., Pani, P., Cardoso, V., Crispino, L.C.B.: Into the lair: gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013). https://doi.org/10.1088/0004-637X/774/1/48. arXiv:1302.2646 [gr-qc]

    Article  ADS  Google Scholar 

  11. Sarkar, A., Rajesh Nayak, K., Majumdar, A.S.: Stochastic gravitational wave background from accreting primordial black hole binaries during early inspiral stage. Phys. Rev. D 100, 103514 (2019). https://doi.org/10.1103/PhysRevD.100.103514. arXiv:1904.13261 [astro-ph.CO]

    Article  CAS  ADS  Google Scholar 

  12. Sarkar, A., Ali, A., Nayak, K.R., Majumdar, A.S.: Enhanced power of gravitational waves and rapid coalescence of black hole binaries through k-essence dark energy accretion. Phys. Rev. D 107, 084038 (2023). https://doi.org/10.1103/PhysRevD.107.084038. arXiv:2210.12502 [gr-qc]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  13. Yagi, K., Tanahashi, N., Tanaka, T.: Probing the size of extra dimension with gravitational wave astronomy. Phys. Rev. D 83, 084036 (2011). https://doi.org/10.1103/PhysRevD.83.084036. arXiv:1101.4997 [gr-qc]

    Article  CAS  ADS  Google Scholar 

  14. Simonetti, J.H., Kavic, M., Minic, D., Surani, U., Vijayan, V.: A precision test for an extra spatial dimension using black hole-pulsar binaries. Astrophys. J. Lett. 737, L28 (2011). https://doi.org/10.1088/2041-8205/737/2/L28. arXiv:1010.5245 [astro-ph.HE]

    Article  ADS  Google Scholar 

  15. Yuan, C., Brito, R., Cardoso, V.: Evaporating black holes: constraints on anomalous emission mechanisms. Phys. Rev. D 104, 124024 (2021). https://doi.org/10.1103/PhysRevD.104.124024. arXiv:2107.14244 [gr-qc]

    Article  CAS  ADS  Google Scholar 

  16. Maggiore, M.: Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University Press, Oxford (2007). https://doi.org/10.1093/acprof:oso/9780198570745.001.0001

    Book  Google Scholar 

  17. Aggarwal, N., et al.: Challenges and opportunities of gravitational-wave searches at MHz to GHz frequencies. Living Rev. Rel. 24, 4 (2021). https://doi.org/10.1007/s41114-021-00032-5. arXiv:2011.12414 [gr-qc]

    Article  Google Scholar 

  18. Babichev, E., Dokuchaev, V., Eroshenko, Y.: Black hole mass decreasing due to phantom energy accretion. Phys. Rev. Lett. 93, 021102 (2004). https://doi.org/10.1103/PhysRevLett.93.021102. arXiv:gr-qc/0402089

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Bondi, H.: On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952). https://doi.org/10.1093/mnras/112.2.195

    Article  MathSciNet  ADS  Google Scholar 

  20. Babichev, E., Dokuchaev, V., Eroshenko, Y.: The accretion of dark energy onto a black hole. J. Exp. Theor. Phys. 100, 528 (2005). https://doi.org/10.1134/1.1901765. arXiv:astro-ph/0505618

    Article  CAS  ADS  Google Scholar 

  21. Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter \(w\) be less than \(-1\)? Phys. Rev. D 68, 023509 (2003). https://doi.org/10.1103/PhysRevD.68.023509. arXiv:astro-ph/0301273

    Article  CAS  ADS  Google Scholar 

  22. He, X., Wang, B., Wu, S.-F., Lin, C.-Y.: Quasinormal modes of black holes absorbing dark energy. Phys. Lett. B 673, 156 (2009). https://doi.org/10.1016/j.physletb.2009.02.002. arXiv:0901.0034 [gr-qc]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  23. Hadjidemetriou, J.D.: Analytic solutions of the two-body problem with variable mass. Icarus 5, 34 (1966). https://doi.org/10.1016/0019-1035(66)90006-6

    Article  MathSciNet  ADS  Google Scholar 

  24. Verhulst, F.: Asymptotic expansions in the perturbed two-body problem with application to systems with variable mass. Celest. Mech. 11, 95 (1975). https://doi.org/10.1007/BF01228739

    Article  MathSciNet  ADS  Google Scholar 

  25. McWilliams, S.T.: Constraining the braneworld with gravitational wave observations. Phys. Rev. Lett. 104, 141601 (2010). https://doi.org/10.1103/PhysRevLett.104.141601. arXiv:0912.4744 [gr-qc]

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Carr, B., Kohri, K., Sendouda, Y., Yokoyama, J.: Constraints on primordial black holes. Rept. Prog. Phys. 84, 116902 (2021). https://doi.org/10.1088/1361-6633/ac1e31. arXiv:2002.12778 [astro-ph.CO]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  27. Damour, T.: Classical and quantum scattering in post-Minkowskian gravity. Phys. Rev. D 102, 024060 (2020). https://doi.org/10.1103/PhysRevD.102.024060. arXiv:1912.02139 [gr-qc]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  28. Bini, D., Damour, T.: Radiation-reaction and angular momentum loss at the second post-Minkowskian order. Phys. Rev. D 106, 124049 (2022). https://doi.org/10.1103/PhysRevD.106.124049. arXiv:2211.06340 [gr-qc]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. Peters, P.C., Mathews, J.: Gravitational radiation from point masses in a Keplerian orbit. Phys. Rev. 131, 435 (1963). https://doi.org/10.1103/PhysRev.131.435

    Article  MathSciNet  ADS  Google Scholar 

  30. MacGibbon, J.H.: Quark- and gluon-jet emission from primordial black holes. II. The emission over the black-hole lifetime. Phys. Rev. D 44, 376 (1991). https://doi.org/10.1103/PhysRevD.44.376

    Article  CAS  ADS  Google Scholar 

  31. Halzen, F., Zas, E., MacGibbon, J.H., Weekes, T.C.: Gamma-rays and energetic particles from primordial black holes. Nature 353, 807 (1991). https://doi.org/10.1038/353807a0

    Article  ADS  Google Scholar 

  32. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 [Erratum: Commun. Math. Phys. 46, 206 (1976)] (1975). https://doi.org/10.1007/BF02345020

  33. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984). https://doi.org/10.1017/CBO9780511622632

    Book  Google Scholar 

  34. Kocsis, B., Suyama, T., Tanaka, T., Yokoyama, S.: Hidden universality in the merger rate distribution in the primordial black hole scenario. Astrophys. J. 854, 41 (2018). https://doi.org/10.3847/1538-4357/aaa7f4. arXiv:1709.09007 [astro-ph.CO]

    Article  CAS  ADS  Google Scholar 

  35. Raidal, M., Spethmann, C., Vaskonen, V., Veermäe, H.: Formation and evolution of primordial black hole binaries in the early universe. JCAP 02, 018 (2019). https://doi.org/10.1088/1475-7516/2019/02/018. arXiv:1812.01930 [astro-ph.CO]

    Article  CAS  ADS  Google Scholar 

  36. Gow, A.D., Byrnes, C.T., Hall, A., Peacock, J.A.: Primordial black hole merger rates: distributions for multiple LIGO observables. JCAP 01, 031 (2020). https://doi.org/10.1088/1475-7516/2020/01/031. arXiv:1911.12685 [astro-ph.CO]

    Article  MathSciNet  ADS  Google Scholar 

  37. Antelis, J.M., Hernández, J.M., Moreno, C.: Post-Newtonian approximation of gravitational waves from the inspiral phase. J. Phys. Conf. Ser. 1030, 012005 (2018). https://doi.org/10.1088/1742-6596/1030/1/012005

    Article  Google Scholar 

  38. Aghanim, N., et al.: (Planck), Planck 2018 results. VI. Cosmological parameters Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910 [Erratum: Astron. Astrophys. 652, C4 (2021)]. arXiv:1807.06209 [astro-ph.CO]

  39. Barrau, A., Martineau, K., Renevey, C.: Catastrophic fate of Schwarzschild black holes in a thermal bath. Phys. Rev. D 106, 023509 (2022). https://doi.org/10.1103/PhysRevD.106.023509. arXiv:2203.13297 [gr-qc]

    Article  MathSciNet  CAS  ADS  Google Scholar 

  40. Acernese, F., et al.: (Virgo), Virgo Detector Characterization and Data Quality: results from the O3 run (2022). arXiv:2210.15633 [gr-qc]

  41. Barrau, A., García-Bellido, J., Grenet, T., Martineau, K.: Prospects for detection of ultra high frequency gravitational waves from compact binary coalescenses with resonant cavities (2023). arXiv:2303.06006 [gr-qc]

  42. Barrau, A., Blachier, B., Lahlou, M., Liu, A., Martineau, K.: Einstein vs Hawking: Black hole binaries and cosmological expansion. Eur. Phys. J. C 83, 1025 (2023). https://doi.org/10.1140/epjc/s10052-023-12210-6

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Blachier.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blachier, B., Barrau, A., Martineau, K. et al. Competitive effects between gravitational radiation and mass variation for two-body systems in circular orbits. Gen Relativ Gravit 56, 20 (2024). https://doi.org/10.1007/s10714-024-03201-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03201-3

Keywords

Navigation