Skip to main content
Log in

Deflection angle and shadow of slowly rotating black holes in galactic nuclei

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

In this paper, we construct the slowly rotating case of an asymptotically flat supermassive black hole embedded in dark matter using Newman–Janis procedure. Our analysis is carried with respect to the involved parameters including the halo total mass M and the galaxy’s lengthscale \(a_0\). Concretly, we investigate the dark matter impact on the effective potential and the photon sphere. In particular, we find that the lengthscale \(a_0\) controles such potential values. Indeed, for low \(a_0\) values, we find that the halo total mass M decreases the potential values significantly while for high \(a_0\) values such impact is diluted. Regarding the shadow aspects, we show that the shadow size is much smaller for high values of \(a_0\) while the opposite effect is observed when the halo total mass M is increased. By comparing our case to the slowly rotating case, we notice that the former exhibits a shadow shifted from its center to the left side. Finally, we compute the deflection angle in the weak-limit approximation and inspect the dark matter parameters influence. By ploting such quantity, we observe that one should expect lower bending angle values for black holes in galactic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Hartle, J.B., Dray, T.: Gravity: an introduction to Einstein’s general relativity. Am. J. Phys. 71, 1086–1087 (2003)

    ADS  Google Scholar 

  2. Hawking, S.W., Israel, W.: General Relativity: An Einstein Centenary Survey. UK Cam- bridge University (2010)

    Google Scholar 

  3. Bardeen, J.M., Carter, B., Hawking, S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161 (1973)

    ADS  MathSciNet  Google Scholar 

  4. Fernández-Melgarejo, J.J., Torrente-Lujan, E.: \(\cal{N} =2\) SUGRA BPS multi-center solutions, quadratic prepotentials and Freudenthal transformations. J. High Ener. Phys. 5, 81 (2014)

    ADS  Google Scholar 

  5. Maldacena J.M.: Black holes in string theory, Ph. D. Thesis, Princeton University (1996)

  6. Borsten, L., Duff, M.J., Fernández-Melgarejo, J.J., Marrani, A., Torrente-Lujan, E.: Black holes and general Freudenthal transformations. J. High Ener. Phys. 2019, 070 (1907)

    MathSciNet  Google Scholar 

  7. Aharony, O., Gubser, S.S., Maldacena, J., Ooguri, H., Oz, Y.: Large N field theories, string theory and gravity. Phys. Repo. 323(3–4), 183–386 (2000)

    ADS  MathSciNet  CAS  Google Scholar 

  8. Belhaj, A., Chabab, M., El Moumni, H., Sedra, M.B.: On thermodynamics of AdS black holes in arbitrary dimensions. Chin. Phys. Lett. 29, 100401 (2012)

    ADS  Google Scholar 

  9. Belhaj, A., El Balali, A., El Hadri, W., Torrente-Lujan, E.: On universal constants of AdS black holes from Hawking-Page phase transition. Phys. Lett. B 811, 135871 (2020)

    MathSciNet  CAS  Google Scholar 

  10. Belhaj, A., El Balali, A., El Hadri, W., El Moumni, H., Essebani, M.A., Sedra, M.B.: On phase transition behaviors of Kerr-Sen Black Hole. Int. J. Geo. Meth. Mod. Phys. 17, 2050169 (2020)

    MathSciNet  Google Scholar 

  11. Belhaj, A., Chabab, M., El Moumni, H., Masmar, K., Sedra, M.B., Segui, A.: On heat properties of AdS black holes in higher dimensions. J. High Ener. Phys. 05, 149 (2015)

    ADS  MathSciNet  Google Scholar 

  12. Hawking, S.W., Page, D.N.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87(4), 577–588 (1983)

    ADS  MathSciNet  Google Scholar 

  13. Torrente-Lujan, E.: Smarr mass formulas for BPS multicenter black holes. Phys. Lett. B 798, 135019 (2019)

    MathSciNet  CAS  Google Scholar 

  14. Maldacena, J.M.: The large-N limit of superconformal field theories and supergravity. Inter. J. Theor. Phys. 38(4), 1113 (1999)

    MathSciNet  Google Scholar 

  15. Witten, E.: Anti de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    ADS  MathSciNet  Google Scholar 

  16. Belhaj, A., El Balali, A., El Hadri, W., El Moumni, H., Sedra, M.B.: Dark energy effects on charged and rotating black holes. Eur. Phys. J. Plus 134(9), 422 (2019)

    Google Scholar 

  17. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. 875(1), L1 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  18. Akiyama, K., et al.: The event horizon telescope collaboration. Astrophys. J. Lett. 910, L12 (2021)

    ADS  CAS  Google Scholar 

  19. Akiyama, K., et al.: The event horizon telescope collaboration. Astrophys. J. Lett. 910, L13 (2021)

    ADS  CAS  Google Scholar 

  20. Synge, J.L.: The escape of photons from gravitationally intense stars. Mont. Not. Roy. Astro. Soc. 131, 463–466 (1966)

    ADS  Google Scholar 

  21. Bardeen, J.M.: Les Houches Summer School of Theoretical Physics: Black Holes, (New York: Gordon and Breach, p. 219. Inc, Science Publishers (1973)

  22. Wei, S.W., Zou, Y.C., Liu, Y.X., Mann, R.B.: Curvature radius and Kerr black hole shadow. J. Cosmol. Astropart. Phys. 08, 30 (2019)

    ADS  MathSciNet  Google Scholar 

  23. Ghasemi-Nodehi, M., Azreg-Aınou, M., Jusufi, K., Jamil, M.: Shadow, quasinormal modes, and quasiperiodic oscillations of rotating Kaluza-Klein black holes. Phys. Rev. D 102, 104032 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  24. Bambhaniya, P., Dey, D., Joshi, A.B., Joshi, P.S., Solanki, D.N., Mehta, A.: Shadows and negative precession in non-Kerr spacetime. Phys. Rev. D 103, 084005 (2021)

    ADS  MathSciNet  CAS  Google Scholar 

  25. Fathi, M., Olivares, M., Villanueva, J.R.: Ergosphere, photon region structure, and the shadow of a rotating charged Weyl black hole. Galaxies 9, 43 (2021)

    ADS  Google Scholar 

  26. Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Horizon structure of rotating Einstein-Born-Infeld black holes and shadow. Eur. Phys. J. C 76, 1 (2016)

    ADS  CAS  Google Scholar 

  27. Atamurotov, F., Ahmedov, B., Abdujabbarov, A.: Optical properties of black holes in the presence of a plasma: The shadow. Phys. Rev. D 92, 084005 (2015)

    ADS  Google Scholar 

  28. Papnoi, U., Atamurotov, F., Ghosh, S.G., Ahmedov, B.: Shadow of five-dimensional rotating Myers-Perry black hole. Phys. Rev. D 90, 024073 (2014)

    ADS  Google Scholar 

  29. Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating non-Kerr black hole. Phys. Rev. D 88, 064004 (2013)

    ADS  Google Scholar 

  30. Atamurotov, F., Abdujabbarov, A., Ahmedov, B.: Shadow of rotating Hořava-Lifshitz black hole. Astrophys. Space Sci. 348, 179–188 (2013)

    ADS  Google Scholar 

  31. Abdujabbarov, A., Atamurotov, F., Kucukakca, Y., Ahmedov, B., Camci, U.: Shadow of Kerr-Taub-NUT black hole. Astrophys. Space Sci. 344, 429–435 (2013)

    ADS  Google Scholar 

  32. Belhaj A. , Benali M., Hassouni Y.: Superentropic Black Hole Shadows in Arbitrary Dimensions, arXiv preprint arXiv:2203.06774 (2022)

  33. Belhaj, A., Belmahi, H., Benali, M., El Moumni, H., Essebani, M.A., Sedra, M.B.: Optical shadows of rotating Bardeen-AdS black holes. Mod. Phys. Lett. A 37, 2250032 (2022)

    ADS  MathSciNet  CAS  Google Scholar 

  34. Belhaj, A., Benali, M., El Moumni, H., Essebani, M.A., Sedra, M.B., Sekhmani, Y.: Thermodynamic and optical behaviors of quintessential hayward-AdS black holes. Int. J. Geom. Meth. Mod. Phys. 19, 2250096 (2022)

    MathSciNet  Google Scholar 

  35. Belhaj, A., Belmahi, H., Benali, M.: Superentropic AdS black hole shadows. Phys. Lett. B 821, 136619 (2021)

    MathSciNet  CAS  Google Scholar 

  36. Belhaj, A., Belmahi, H., Benali, M., El Hadri, W., El Moumni, H., Torrente-Lujan, E.: Shadows of 5D black holes from string theory. Phys. Lett. B 812, 136025 (2021)

    MathSciNet  CAS  Google Scholar 

  37. Belhaj, A., Benali, M., El Balali, A., El Hadri, W., El Moumni, H., Torrente-Lujan, E.: Black hole shadows in M-theory scenarios. Inter. Jour. Mod. Phys. D 30(04), 2150026 (2021)

    ADS  MathSciNet  Google Scholar 

  38. Belhaj, A., Benali, M., El Balali, A., El Hadri, W., El Moumni, H.: Cosmological constant effect on charged and rotating black hole shadows. Int. J. Geom. Meth. Mod. Phys. 18, 2150188 (2021)

    MathSciNet  Google Scholar 

  39. Belhaj, A., Benali, M., El Balali, A., El Moumni, H., Ennadifi, S.E.: Deflection angle and shadow behaviors of quintessential black holes in arbitrary dimensions. Class. Quant. Grav. 37, 215004 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  40. Belhaj, A., El Balali, A., El Hadri, W., Hassouni, Y., Torrente-Lujan, E.: Phase transition and shadow behaviors of quintessential black holes in M-theory/superstring inspired models. Int. J. Mod. Phys. A. 36, 2150057 (2021)

    ADS  MathSciNet  CAS  Google Scholar 

  41. Hoekstra, H., Bartelmann, M., Dahle, H., Israel, H., Limousin, M., Meneghetti, M.: Masses of galaxy clusters from gravitational lensing. Space Sci. Rev. 177, 75–118 (2013)

    ADS  Google Scholar 

  42. Brouwer, M.M., et al.: Studying galaxy troughs and ridges using weak gravitational lensing with the Kilo-Degree Survey. Mon. Not. R. Astron. Soc. 481, 5189 (2018)

    ADS  CAS  Google Scholar 

  43. Bellagamba, F., et al.: AMICO galaxy clusters in KiDS-DR3: weak lensing mass calibration. Mon. Not. Roy. Astron. Soc. 484, 1598 (2019)

    ADS  CAS  Google Scholar 

  44. Vanderveld, R.A., Mortonson, M.J., Hu, W., Eifler, T.: Testing dark energy paradigms with weak gravitational lensing. Phys. Rev. D 85, 103518 (2012)

    ADS  Google Scholar 

  45. He, H.J., Zhang, Z.: Direct probe of dark energy through gravitational lensing effect. J. Cosmol. Astropart. Phys. 2017, 036 (2017)

    MathSciNet  Google Scholar 

  46. Cao, S., Covone, G., Zhu, Z.H.: Testing the dark energy with gravitational lensing statistics. Astrophys. J. 755, 31 (2012)

    ADS  Google Scholar 

  47. Huterer, D., Shafer, D.L.: Dark energy two decades after: observables, probes, consistency tests. Rep. Prog. Phys. 81, 016901 (2018)

    ADS  PubMed  Google Scholar 

  48. Jung, S., Shin, C.S.: Gravitational-wave fringes at LIGO: detecting compact dark matter by gravitational lensing. Phys. Rev. Lett. 122, 041103 (2019)

    ADS  CAS  PubMed  Google Scholar 

  49. Andrade, K.E., Minor, Q., Nierenberg, A., Kaplinghat, M.: Detecting dark matter cores in galaxy clusters with strong lensing. Mon. Not. R. Astron. Soc. 487, 1905 (2019)

    ADS  CAS  Google Scholar 

  50. Turimov, B., Ahmedov, B., Abdujabbarov, A., Bambi, C.: Gravitational lensing by a magnetized compact object in the presence of plasm. Int. J. Mod. Phys. D 28, 2040013 (2019)

    ADS  Google Scholar 

  51. Övgün, A., Sakalli, I., Saavedra, J.: Shadow cast and Deflection angle of Kerr-Newman-Kasuya spacetime. J. Cosmol. Astropart. Phys. 2018, 041 (2018)

    MathSciNet  Google Scholar 

  52. Övgün, A., Jusufi, K., Sakalli, I.: Gravitational lensing under the effect of Weyl and bumblebee gravities: applications of Gauss-Bonnet theorem. Ann. Phys. 399, 193 (2018)

    ADS  MathSciNet  Google Scholar 

  53. Övgün, A.: Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem. Phys. Rev. D 98, 044033 (2018)

    ADS  MathSciNet  Google Scholar 

  54. Övgün, A., Sakalli, I., Saavedra, J.: Weak gravitational lensing by Kerr-MOG black hole and Gauss-Bonnet theorem. Ann. Phys. 411, 167978 (2019)

    MathSciNet  Google Scholar 

  55. Jusufi, K., Övgün, A.: Gravitational lensing by rotating wormholes. Phys. Rev. D 97, 024042 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  56. Övgün, A., Gyulchev, G., Jusufi, K.: Weak Gravitational lensing by phantom black holes and phantom wormholes using the Gauss-Bonnet theorem. Ann. Phys. 406, 152 (2019)

    ADS  MathSciNet  Google Scholar 

  57. Övgün, A.: Weak field deflection angle by regular black holes with cosmic strings using the Gauss-Bonnet theorem. Phys. Rev. D 99, 104075 (2019)

    ADS  MathSciNet  Google Scholar 

  58. Jusufi, K., Werner, M.C., Banerjee, A., Övgün, A.: Light deflection by a rotating global monopole spacetime. Phys. Rev. D 95, 104012 (2017)

    ADS  MathSciNet  Google Scholar 

  59. Sakalli, I., Övgün, A.: Hawking radiation and deflection of light from Rindler modified Schwarzschild black hole. Europhys. Lett. 118, 60006 (2017)

    ADS  Google Scholar 

  60. Jusufi, K., Övgün, A., Banerjee, A.: Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory. Phys. Rev. D 96, 084036 (2017)

    ADS  MathSciNet  Google Scholar 

  61. Kumaran, Y., Övgün, A.: Weak deflection angle of extended uncertainty principle black holes. Chin. Phys. C 44, 025101 (2020)

    ADS  CAS  Google Scholar 

  62. Jusufi, K., Övgün, A., Saavedra, J., Vásquez, Y., Gonzalez, P.A.: Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phys. Rev. D 97, 124024 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  63. Javed, W., Abbas, J., Övgün, A.: Deflection angle of photon from magnetized black hole and effect of nonlinear electrodynamics. Eur. Phys. J. C 79, 694 (2019)

    ADS  Google Scholar 

  64. Jusufi, K., Sakallı, I., Övgün, A.: Effect of Lorentz symmetry breaking on the deflection of light in a cosmic string spacetime. Phys. Rev. D 96, 024040 (2017)

    MathSciNet  Google Scholar 

  65. Li, Z., Övgün, A.: Finite-distance gravitational deflection of massive particles by a Kerr-like black hole in the bumblebee gravity model. Phys. Rev. D 101, 024040 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  66. Saurabh, K., Jusufi, K.: Imprints of dark matter on black hole shadows using spherical accretions. Euro. Phys. Jour. C 81, 1–14 (2021)

    ADS  Google Scholar 

  67. Jusufi, K.: Quasinormal modes of black holes surrounded by dark matter and their connection with the shadow radius. Phys. Rev. D 101, 084055 (2020)

    ADS  MathSciNet  CAS  Google Scholar 

  68. Hou, X., Xu, Z., Zhou, M., Wang, J.: Black hole shadow of Sgr A* in dark matter halo. J. Cosmol. Astropart. Phys. 07, 015 (2018)

    ADS  Google Scholar 

  69. Ma, T.C., Zhang, H.X., He, P.Z., Zhang, H.R., Chen, Y., Deng, J.B.: Shadow cast by a rotating and nonlinear magnetic-charged black hole in perfect fluid dark matter. Mod. Phys. Lett. A 36, 2150112 (2021)

    ADS  MathSciNet  CAS  Google Scholar 

  70. Pantig, R.C., Rodulfo, E.T.: Rotating dirty black hole and its shadow. Chin. J. Phys. 68, 236–257 (2020)

    MathSciNet  Google Scholar 

  71. Bisnovatyi-Kogan, G.S., Tsupko, O.Y.: Shadow of a black hole at cosmological distances. Phys. Rev. D 98, 084020 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  72. Perlick, V., Tsupko, O.Y., Bisnovatyi-Kogan, G.S.: Black hole shadow in an expanding universe with a cosmological constant. Phys. Rev. D 97, 104062 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  73. Cunha, P.V.P., Herdeiro, C.A.R., Radu, E., Runarsson, H.F.: Shadows of Kerr black holes with scalar hair. Phys. Rev. Lett. 115, 211102 (2015)

    ADS  PubMed  Google Scholar 

  74. Hou, X., Xu, Z., Wang, J.: Rotating black hole shadow in perfect fluid dark matter. J. Cosmol. Astropart. Phys. 12, 040 (2018)

    ADS  MathSciNet  Google Scholar 

  75. Haroon, S., Jamil, M., Jusufi, K., Lin, K., Mann, R.B.: Shadow and deflection angle of rotating black holes in perfect fluid dark matter with a cosmological constant. Phys. Rev. D 99, 044015 (2019)

    ADS  MathSciNet  CAS  Google Scholar 

  76. Rubin, V.C., Ford, J.W.K., Thonnard, N.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R= 4kpc/to UGC 2885/R= 122 kpc. Astrophys. J. 238, 471 (1980)

    ADS  CAS  Google Scholar 

  77. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. 875, L2 (2019). arXiv:1906.11239 [astro-ph.IM]

    ADS  CAS  Google Scholar 

  78. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. 875, L3 (2019). arXiv:1906.11240 [astro-ph.GA]

    ADS  Google Scholar 

  79. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. 875, L4 (2019). arXiv:1906.11241 [astro-ph.GA]

    ADS  CAS  Google Scholar 

  80. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. 875, L5 (2019). arXiv:1906.11242 [astro-ph.GA]

    ADS  CAS  Google Scholar 

  81. Akiyama, K., et al.: Event horizon telescope collaboration. Astrophys. J. 875, L6 (2019). arXiv:1906.11243 [astro-ph.GA]

    ADS  CAS  Google Scholar 

  82. Toshmatov, B., Stuchlik, Z., Ahmedov, B.: Rotating black hole solutions with quintessential energy. Euro Phys. J. p 132, 98 (2017)

    Google Scholar 

  83. Shaymatov, S., Ahmedov, B., Stuchlik, Z., Abdujabbarov, A.: Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy. Int. J. Mod. Phys. D 27, 1850088 (2018)

    ADS  MathSciNet  CAS  Google Scholar 

  84. Li, M.H., Yang, K.C.: Galactic dark matter in the phantom field. Phys. Rev. D 86, 123015 (2012)

    ADS  Google Scholar 

  85. Das, A., Saha, A., Gangopadhyay, S.: Investigation of circular geodesics in a rotating charged black hole in the presence of perfect fluid dark matter. Class. Quant. Grav. 38, 065015 (2021)

    ADS  MathSciNet  CAS  Google Scholar 

  86. Övgün, A.: Weak deflection angle of black-bounce traversable wormholes using Gauss-Bonnet theorem in the dark matter medium. Turk. J. Phys. 44, 465 (2020)

    Google Scholar 

  87. Övgün, A.: Deflection Angle of photons through dark matter by black holes and wormholes using Gauss-Bonnet theorem. Universe 5, 115 (2019)

    ADS  Google Scholar 

  88. Pantig, R.C., Rodulfo, E.T.: Weak deflection angle of a dirty black hole. Chin. J. Phys. 66, 691 (2020)

    MathSciNet  Google Scholar 

  89. Pantig, R.C., Rodulfo, E.T.: Rotating dirty black hole and its shadow. Chin. J. Phys. 68, 236 (2020)

    MathSciNet  Google Scholar 

  90. Eda, K., Itoh, Y., Kuroyanagi, S., Silk, J.: New probe of dark-matter properties: gravitational waves from an intermediate-mass black hole embedded in a dark-matter minispike. Phys. Rev. Lett. 110, 221101 (2013)

    ADS  PubMed  Google Scholar 

  91. Macedo, C.F.B., Pani, P., Cardoso, V., Crispino, L.C.B.: Into the lair: gravitational-wave signatures of dark matter. Astrophys. J. 774, 48 (2013)

    ADS  Google Scholar 

  92. Barausse, E., Cardoso, V., Pani, P.: Can environmental effects spoil precision gravitational-wave astrophysics? Phys. Rev. D 89, 104059 (2014)

    ADS  Google Scholar 

  93. Cardoso, V., Maselli, A.: Constraints on the astrophysical environment of binaries with gravitational-wave observations. Astron. Astrophys. 644, A147 (2020)

    ADS  CAS  Google Scholar 

  94. Cardoso, V., Destounis, K., Duque, F., Panosso-Macedo, R., Maselli, A.: Detecting dark matter around black holes with gravitational waves: effects of dark-matter dynamics on the gravitational waveform. Phys. Rev. D 102, 083006 (2020)

    MathSciNet  Google Scholar 

  95. Cardoso, V., Destounis, K., Duque, F., Panosso Macedo, R., Maselli, A.: Gravitational waves from extreme-mass-ratio systems in astrophysical environments. Phys. Rev. Lett. 129, 241103 (2022)

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  96. Destounis, K., Kulathingal, A., Kokkotas, K.D., Papadopoulos, G.O.: Gravitational-wave imprints of compact and galactic-scale environments in extreme-mass-ratio binaries. Phys. Rev. D 107(8), 084027 (2023)

    ADS  MathSciNet  CAS  Google Scholar 

  97. Figueiredo, E., Maselli, A., Cardoso, V.: Black holes surrounded by generic dark matter profiles: appearance and gravitational-wave emission. Phys. Rev. D 107(10), 104033 (2023)

    ADS  MathSciNet  CAS  Google Scholar 

  98. Cardoso, V., Destounis, K., Duque, F., Macedo, R.P., Maselli, A.: Black holes in galaxies: environmental impact on gravitational-wave generation and propagation. Phys. Rev. D 105, L061501 (2022)

    ADS  MathSciNet  CAS  Google Scholar 

  99. Hernquist, L.: An analytical model for spherical galaxies and bulges. Astroph. J. 356, 359 (1990)

    ADS  Google Scholar 

  100. Newman, E.T., Janis, A.I.: Note on the Kerr spinning-particle metric. J. Math. Phys. 6, 915 (1965)

    ADS  MathSciNet  Google Scholar 

  101. Drake, S.P., Szekeres, P.: Uniqueness of the Newman-Janis algorithm in generating the Kerr-Newman metric. Gen. Rel. Grav. 32, 445–458 (2000)

    ADS  MathSciNet  Google Scholar 

  102. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559 (1968)

    ADS  Google Scholar 

  103. Vazquez, S., Esteban, E.P.: Strong field gravitational lensing by a Kerr black hole. Nuovo Cim. B 119, 489 (2004)

    ADS  MathSciNet  Google Scholar 

  104. Motta, S.E., Belloni, T.M., Stella, L., Muñoz-Darias, T., Fender, R.: Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: the case of GRO J1655–40. Mon. Not. R. Astro. Soc. 437, 2554–2565 (2014)

    ADS  Google Scholar 

  105. Morningstar, W.R., Miller, J.M.: The spin of the black hole 4U 1543–47. Astroph. J. Lett. 793, L33 (2014)

    ADS  Google Scholar 

  106. Gibbons, G., Werner, M.: Applications of the Gauss-Bonnet theorem to gravitational lensing. Class. Quant. Grav. 25, 235009 (2008). arXiv:0807.0854

    ADS  MathSciNet  Google Scholar 

  107. Beltracchi, P., Gondolo, P.: Physical interpretation of Newman-Janis rotating systems: II–general systems. Phys. Rev. D 104, 124067 (2021)

    ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Balali.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A: Energy-momentum, Einstein tensor and energy conditions

A: Energy-momentum, Einstein tensor and energy conditions

1.1 A.1: Energy-momentum and Einstein tensors

The energy-momentum tensor for a general spherically symmetric metric of the form

$$\begin{aligned} ds^2=-f(r) dt^2 + \frac{dr^2}{g(r)}+r^2 \left( d\theta ^2 + \sin ^2\theta d\phi ^2 \right) , \end{aligned}$$
(A.1)

can be given by

$$\begin{aligned} T^{t}_{\, \, \, \, t}=-\rho , \quad T^{r}_{\, \, \, \, r}=p_r,\quad T^{\theta }_{\, \, \, \, \theta }= T^{\phi }_{\, \, \, \, \phi }=p_T. \end{aligned}$$
(A.2)

To determine the explicit expression of the energy-momentum tensor, we rewrite the metric functions f(r) and g(r) in the following way

$$\begin{aligned} g(r)=1-\frac{2m(r)}{r}, \quad f(r)=\frac{g(r)}{\left[ j(r)\right] ^2}, \end{aligned}$$
(A.3)

with

$$\begin{aligned} j(r)=\sqrt{1-\frac{2 M r}{(a_0+r)^2}\left( 1-\frac{2M_{BH}}{r} \right) } \, e^{\frac{\pi }{2}\sqrt{\frac{M}{2a_0-M+4M_{BH}}}-\sqrt{\frac{M}{2a_0-M+4M_{BH}}}\arctan \left( \frac{r+a_0-M}{\sqrt{M\left( 2a_0-M+4M_{BH} \right) }} \right) }. \end{aligned}$$
(A.4)

Using the known definitions of \(\rho , p_r\) and \(p_T\), we obtain

$$\begin{aligned} \rho&=\frac{m'}{4 \pi r^2}=\frac{M \left( a_0+2M_{BH}\right) \left( 1-\frac{2M_{BH}}{r} \right) }{2\pi r\left( r+a_0\right) ^3}, \end{aligned}$$
(A.5)
$$\begin{aligned} p_r&=-\frac{m'}{4 \pi r^2}-\frac{(r-2m)j'}{4 \pi r^2 j}=0, \end{aligned}$$
(A.6)
$$\begin{aligned} p_T&=-\frac{m''}{4 \pi r^2}+\frac{3r m'-r-m}{8 \pi r^2 j} j'+\frac{(r-2m)(j')^2}{4 \pi r j^2}-\frac{r-2m}{8 \pi r j}j'', \end{aligned}$$
(A.7)
$$\begin{aligned}&=\frac{M(a_0+2M_{BH})(a_0^2 M_{BH}+2a_0 M_{BH} r+ M_{BH}r^2+M\left( r-2M_{BH} \right) ^2 )}{4\pi r^2\left( a_0+r\right) ^3 \left( a_0^2+4M M_{BH}+2a_0r-2Mr+r^2\right) }, \end{aligned}$$
(A.8)

where \(m'\) is associated to the first derivative of m while \(m''\) is the second derivative. Thus, the non-rotating energy-momentum tensor is

$$\begin{aligned} T^{\mu }_{\, \, \, \, \nu }=diag\left( -\rho ,0,p_T,p_T\right) . \end{aligned}$$
(A.9)

The Newman–Janis algorithm application on the metric (A.1) give rise to a slowly rotating black hole with a spacetime described by the following metric

$$\begin{aligned} ds^2=-f(r) dt^2 + \frac{dr^2}{g(r)}+h(r) d\Omega ^2-2a \, e(r) \sin ^2 \theta dt d\phi . \end{aligned}$$
(A.10)

However, the energy-momentum tensor of such solution is different from the non-rotating one given by (A.9). Using the function j(r), we can rewrite the metric (A.10) as

$$\begin{aligned} ds^2=-f(r) dt^2 + \frac{dr^2}{g(r)}+h(r) d\Omega ^2-2a \left( \frac{1}{j(r)} -\frac{g(r)}{j(r)^2} \right) \sin ^2 \theta dt d\phi . \end{aligned}$$
(A.11)

To establish the expression of the energy-momentum tensor components, we introduce an orthonormal tetrad \(e^\alpha _{\widehat{\alpha }}\) adapted to the metric (A.11)

$$\begin{aligned} e^\alpha _{\widehat{\alpha }}=\begin{pmatrix} \frac{j}{\sqrt{1-\frac{2m}{r}}} &{} 0 &{} 0 &{} \frac{a \sin \theta }{r} \\ 0 &{} \sqrt{1-\frac{2m}{r}} &{} 0 &{} 0\\ 0 &{} 0 &{} \frac{1}{r} &{} 0 \\ \frac{a}{r^2 \sqrt{1-\frac{2m}{r}}} &{} 0 &{} 0 &{} \frac{1}{r \sin \theta } \end{pmatrix}, \end{aligned}$$
(A.12)

such that \(g_{\widehat{\alpha } \widehat{\beta }}=g_{\alpha \beta } \, e^\alpha _{\, \, \, \, \widehat{\alpha }} e^\beta _{ \, \, \, \,\widehat{\beta }}=diag(-1,1,1,1)\). In this way, the energy momentum tensor component forms become simple. However, the defined tetrad is not the principale frame of the energy momentum where it is diagonal. In this base, the latter is given by

$$\begin{aligned} T_{\widehat{\mu } \widehat{\nu }}=\begin{pmatrix} -\widehat{u}_0 &{} 0 &{} 0 &{} \widehat{\sigma }_{30} \\ 0 &{} \widehat{u}_1 &{} \widehat{\sigma }_{12} &{} 0\\ 0 &{} \widehat{\sigma }_{12} &{} \widehat{u}_2 &{} 0 \\ \widehat{\sigma }_{30} &{} 0 &{} 0 &{} \widehat{u}_3 \end{pmatrix}, \end{aligned}$$
(A.13)

where \(\widehat{\sigma }_{12}=\left( r\sqrt{1-\frac{2\,m}{r}} \right) \sin \theta \, \,\widehat{u}_{12}, \widehat{\sigma }_{30}=\left( r\sqrt{1-\frac{2\,m}{r}} \right) \sin \theta \, \, \widehat{u}_{30} \) and the quantities \(\widehat{u}_{i}, \widehat{u}_{ij}\) depend on mj and their derivatives \(m', m'', j', j''\). According to [107], the final expressions of the energy-momentum components can be obtained as a function of \(\widehat{u}_{i}, \widehat{u}_{ij}\). In the case of a slowly rotating black hole, higher orders in a should be omitted, yielding

$$\begin{aligned} \widehat{u}_{0}&=-\frac{m'}{4 \pi r^2}=-\rho , \end{aligned}$$
(A.14)
$$\begin{aligned} \widehat{u}_{1}&=-\frac{1}{4 \pi r^2 j}\left( j m'+j'(r-2m) \right) =0, \end{aligned}$$
(A.15)
$$\begin{aligned} \widehat{u}_{2}&=\frac{1}{8 \pi r^2 j^2}\left( -rj m''-rj(r-2m)j''+2r(r-2m)-j(m+r-3rm')j' \right) , \end{aligned}$$
(A.16)
$$\begin{aligned}&=\frac{M(a_0+2M_{BH})(a_0^2 M_{BH}+2a_0 M_{BH} r+ M_{BH}r^2+M\left( r-2M_{BH} \right) ^2 )}{4\pi r^2\left( a_0+r\right) ^3 \left( a_0^2+4M M_{BH}+2a_0r-2Mr+r^2\right) }=p_T, \nonumber \\ \widehat{u}_{3}&=\frac{1}{8 \pi r^2 j^2}\left( r^2(2j'-j j'')+r(3j j' m'-j^2 m''-4 j'm +2 j j'' m-j j')-j j' m \right) , \end{aligned}$$
(A.17)
$$\begin{aligned}&=\frac{M(a_0+2M_{BH})(a_0^2 M_{BH}+2a_0 M_{BH} r+ M_{BH}r^2+M\left( r-2M_{BH} \right) ^2 )}{4\pi r^2\left( a_0+r\right) ^3 \left( a_0^2+4M M_{BH}+2a_0r-2Mr+r^2\right) }=p_T, \nonumber \\ \widehat{u}_{30}&= \frac{a}{16 \pi r^4 j^2}\left( -2r j j'+r^2 j^2-r^2j j''-2j(j-1) \right) , \end{aligned}$$
(A.18)
$$\begin{aligned}&=\frac{a}{16 \pi r^4 (a_0+r)^2 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^2} \nonumber \\&\times \left\{ 4 M^2 r^2 (a_0+2 M_{BH})^2+M^2 r^2 (a_0+4M_{BH}-r)^2-2 M^2 r^2 (a_0+r) (a_0+4 M_{BH}-r)\right. \nonumber \\&-2 M r^2 (2 a_0+6 M_{BH}-r) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) \nonumber \\&-2 M r^2 (a_0+r)^2 (a_0-M+r) \nonumber \\&-2 ( a_0+r)^2 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^2 -M^2 r^2 (a_0+r)^2 \nonumber \\&+4 M r^3 (a_0+2 M_{BH}) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^{3/2} \nonumber \\&\times \exp \left( \frac{1}{2} \sqrt{\frac{M}{2 a_0-M+4 M_{BH}}} \left( \pi -2 \arctan \left( \frac{a_0-M+r}{\sqrt{M (2 a_0-M+4 M_{BH})}}\right) \right) \right) \nonumber \\&+2 (a_0+r)^3 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^{3/2} \nonumber \\&\left. \times \exp \left( -\frac{1}{2} \sqrt{\frac{M}{2a_0-M+4 M_{BH}}} \left( \pi -2 \arctan \left( \frac{a_0-M+r}{\sqrt{M (2a_0-M+4 M_{BH})}}\right) \right) \right) \right\} , \nonumber \\ \widehat{u}_{12}&=0. \end{aligned}$$
(A.19)

Regarding the components of the energy-momentum tensor, we obtain

$$\begin{aligned} T^t_{\, \, \, \, t}&=\frac{1}{r^2 j} \left( a \sin ^2 \theta \left( r^2(1+j)-2rm \right) \widehat{u}_{30}+r^4 j^2 \widehat{u}_{0} \right) \simeq \widehat{u}_{0}=-\rho , \end{aligned}$$
(A.20)
$$\begin{aligned} T^t_{\, \, \, \, \phi }&=\frac{\sin ^2 \theta }{r^2 j} \left( a r^2 j \left( \widehat{u}_{3} -\widehat{u}_{0} \right) -r^4 j^2 \widehat{u}_{30} \right) , \end{aligned}$$
(A.21)
$$\begin{aligned}&= \frac{a \sin ^2(\theta )}{16 \pi r^2 (a_0+r)^3 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^2} \times \nonumber \\&\quad \left\{ \exp \left( \alpha \right) \sqrt{(a_0+r)^2+M (4 M_{BH}-2 r)} \right. \nonumber \\&\quad \times \left[ -4 M^2 r^2 (a_0+2 M_{BH})^2-M^2 r^2 (a_0+4 M_{BH}-r)^2\right. \nonumber \\&\quad +2 M^2 r^2 (a_0+r) (a_0+4 M_{BH}-r) \nonumber \\&\quad +2 M r^2 (2 a_0+6 M_{BH}-r) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) \nonumber \\&\quad +2 M r^2 (a_0+r)^2 (a_0-M+r) \nonumber \\&\quad +M^2 r^2 (a_0+r)^2 +2 (a_0+r)^2 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^2 \nonumber \\&\quad -2 (a_0+r)^3 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^{3/2} \times \exp \left( -\alpha \right) \nonumber \\&\quad \left. -4 M r^3 (a_0+2M_{BH}) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^{3/2} \times \exp \left( \alpha \right) \right] \nonumber \\&\quad +4 M (a_0+2 M_{BH}) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) \nonumber \\&\quad \times \left. \left( a_0^2 (2 r-3 M_{BH})+a_0 \left( 4 r^2-6 M_{BH} r\right) -3 M (r-2 M_{BH})^2+r^2 (2 r-3 M_{BH})\right) \right\} , \nonumber \\ T^\phi _{\, \, \, \, t}&= \frac{1}{r^2 j}\left( r ( r-2m) \widehat{u}_{30}-a(\widehat{u}_3 - \widehat{u}_0)\right) , \end{aligned}$$
(A.22)
$$\begin{aligned}&= \frac{a \exp \left( -\alpha \right) }{16 \pi r^5 (a_0+r)^3 \left( a_0^2+2a_0 r+4 M M_{BH}-2 M r+r^2\right) \sqrt{(a_0+r)^2+M (4M_{BH}-2 r)}} \times \nonumber \\&\quad \left\{ 4 M r (a_0+2 M_{BH}) (a_0+r) \left[ a_0^2 (3 M_{BH}-2 r)+2 a_0 r (3 M_{BH}-2 r) \right. \right. \nonumber \\&\qquad \left. +3 M (r-2 M_{BH})^2+r^2 (3 M_{BH}-2 r)\right] \nonumber \\&\quad +(r-2 M_{BH})\left[ 4 M^2 r^2 (a_0+2 M_{BH})^2+M^2 r^2 (a_0+4 M_{BH}-r)^2\right. \nonumber \\&\quad -2 M^2 r^2 (a_0+r) (a_0+4 M_{BH}-r) \nonumber \\&\quad -2 M r^2 (2 a_0+6 M_{BH}-r) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) -M^2 r^2 (a_0+r)^2 \nonumber \\&\quad -2 M r^2 (a_0+r)^2 (a_0-M+r) -2 (a_0+r)^2 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^2 \nonumber \\&\quad +4 M r^3 (a_0+2 M_{BH}) \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^{3/2} \times \exp \left( \alpha \right) \nonumber \\&\quad \left. \left. +2 (a_0+r)^3 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) ^{3/2} \times \exp \left( -\alpha \right) \right] \right\} , \nonumber \\ T^\phi _{\, \, \, \, \phi }&=\frac{1}{r^2 j} \left( -a r \sin ^2 \theta \left( r(1+j)-2m \right) \widehat{u}_{30}+r^2 j \widehat{u}_3 \right) \simeq \widehat{u}_3=p_T, \quad T^r_{\, \, \, \, r} = \widehat{u}_1=0, \end{aligned}$$
(A.23)
$$\begin{aligned} T^r_{\, \, \, \, \theta }&= \left( r^2-2r m \right) \widehat{u}_{12}\sin \theta =0, \quad T^\theta _{\, \, \, \, r} = \widehat{u}_{12}\sin \theta =0, \quad T^\theta _{\, \, \, \, \theta }= \widehat{u}_{2} = p_T, \end{aligned}$$
(A.24)

where \(\alpha = \frac{1}{2} \sqrt{\frac{M}{2 a_0-M+4M_{BH}}} \left( \pi -2 \arctan \left( \frac{a_0-M+r}{\sqrt{M (2 a_0-M+4 M_{BH})}}\right) \right) \). We omitted the terms with \(a \times \widehat{u}_{30}\) since they are proportional to \(a^2\). If we set \(T^t_{\, \, \, \, \phi } = a \chi \left( r,\theta \right) \) and \(T^\phi _{\, \, \, \, t}= a\Psi (r) \), we can write the energy momentum tensor as follows

$$\begin{aligned} T^\mu _\nu =\begin{bmatrix} -\rho &{} 0 &{} 0 &{} a \chi \left( r,\theta \right) \\ 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} p_T &{} 0 \\ a \Psi (r) &{} 0 &{} 0 &{} p_T \end{bmatrix}. \end{aligned}$$
(A.25)

Thus, such a form can describe a slowly rotating black hole in active galactic nuclei. Taking the limit \(a \rightarrow 0\), we recover the non rotating energy momentum tensor given in Eq.(A.9). It is worth noting that the Einstein tensor can also be calculated in the slowly rotating regime. Indeed, with the use of the metric provided in equation (A.11), we obtain the following Einstein tensor components

$$\begin{aligned} G_{t}^{t}&=\frac{r g^{\prime }(r)+g(r)-1}{r^2}, \nonumber \\ G_{t}^{\phi }&=\frac{a }{4 r^4 f(r)^2} \left( 2 r^2 f(r)^2 g(r) e^{\prime \prime } (r)-r^2 f(r) g(r) e^{\prime }(r) f^{\prime }(r)+r^2 f(r)^2 e^{\prime }(r) g^{\prime }(r) \right. \nonumber \\&\left. -2 r^2 e(r) f(r) g(r) f^{\prime \prime }(r) -r^2 e(r) f(r) f^{\prime }(r) g^{\prime }(r)+r^2 e(r) g(r) f^{\prime }(r)^2-4 e(r) f(r)^2\right) , \nonumber \\ G_{\phi }^{t}&=-\frac{a \sin ^2(\theta )}{4 r^2 f(r)^2} \left( 2 r^2 f(r) g(r) e^{\prime \prime }(r)-r^2 g(r) e^{\prime }(r) f^{\prime }(r)+r^2 f(r) e^{\prime }(r) g^{\prime }(r) \right. \nonumber \\&\quad \left. +2 r e(r) g(r) f^{\prime }(r)-2 r e(r) f(r) g^{\prime }(r)-4 e(r) f(r) g(r)\right) , \nonumber \\ G_{\theta }^{\theta }&=\frac{2 r f(r) g(r) f^{\prime \prime }(r)+r f(r) f^{\prime }(r) g^{\prime }(r)+2 f(r) g(r) f^{\prime }(r)-r g(r) f^{\prime } (r)^2+2 f(r)^2 g^{\prime }(r)}{4 r f(r)^2}, \nonumber \\ G_{\phi }^{\phi }&=\frac{2 r f(r) g(r) f^{\prime \prime }(r)+r f(r) f^{\prime }(r) g^{\prime }(r)+2 f(r) g(r) f^{\prime }(r)-r g(r) f^{\prime }(r)^2+2 f(r)^2 g^{\prime }(r)}{4 r f(r)^2}. \end{aligned}$$
(A.26)

From these expressions, we remark that \(G_{\phi }^{t}\) depend on \(a, \theta \) and r and that \(G_{t}^{\phi }\) depend on a and r which agree with the expression of the energy-momentum tensor given above. By taking the limit \(a \rightarrow 0\), \(G_{\phi }^{t}\) and \(G_{t}^{\phi }\) go to zero and the non rotating, symmetrical and diagonal Einstein tensor can be recovered. Besides, by computing the expression of \(G_{t}^{t}\) and \(G_{\theta }^{\theta }\) or \(G_{\phi }^{\phi }\), we obtain

$$\begin{aligned} G_{t}^{t}&= \frac{4 M (a_0+2 M_{BH}) (2 M_{BH}-r)}{r^2 (a_0+r)^3}, \nonumber \\ G_{\phi }^{\phi }=G_{\theta }^{\theta }&= \frac{2 M (a_0+2 M_{BH}) \left( a_0^2 M_{BH}+2 a_0 M_{BH} r+M (r-2 M_{BH})^2+M_{BH} r^2\right) }{r^2 (a_0+r)^3 \left( a_0^2+2 a_0 r+4 M M_{BH}-2 M r+r^2\right) }. \end{aligned}$$
(A.27)

Since the Einstein equation is given by \(T^\mu _\nu =\frac{1}{8 \pi } G^\mu _\nu \), we conclude that the computations of \(G^\mu _\nu \) agree with the expressions of the quantities \(\rho \) in (A.5) and \(p_T\) given in equation (A.8) and also the ones derived through the calculation of the energy-momentum tensor.

1.2 A.2: Weak energy condition

The Weak Energy Condition can be used in singularity theorems associated with black holes. In specific terms, the later is exploited to show that under certain conditions, the formation of singularities is indispensable. In the present work, we consider the last energy momentum tensor \(T^\mu _\nu \) associated with the slowly rotating solution. Using this tensor, we have derived the quantities \(\rho \) and \(p_T\) which are given by

$$\begin{aligned} \rho&=\frac{M \left( a_0+2M_{BH}\right) \left( 1-\frac{2M_{BH}}{r} \right) }{2\pi r\left( r+a_0\right) ^3}, \end{aligned}$$
(A.28)
$$\begin{aligned} p_T&=\frac{M(a_0+2M_{BH})(a_0^2 M_{BH}+2a_0 M_{BH} r+ M_{BH}r^2+M\left( r-2M_{BH} \right) ^2 )}{4\pi r^2\left( a_0+r\right) ^3 \left( a_0^2+4M M_{BH}+2a_0r-2Mr+r^2\right) }. \end{aligned}$$
(A.29)

According to the weak energy condition, all classical matter must be non-negative when by any observer in space-time [48], i.e

$$\begin{aligned} T_{\mu \nu } \xi ^\mu \xi ^\nu \ge 0 \end{aligned}$$

for all the time-like vectors \(\xi ^\mu \). By decomposing the energy-momentum tensor, we find that the weak energy condition can be written as

$$\begin{aligned} \rho \ge 0, \rho + p_T \ge 0. \end{aligned}$$
Fig. 6
figure 6

Dependence of matter density \(\rho \) and \(\rho +p_T\) on the radius for the slowly rotating black hole

To verify the weak energy conditions, we illustrate the variation of \(\rho \) and \(\rho + p_T\) as function of the radial coordinate r according to equations (A.28) and (A.29). Indeed, in the Fig. 6 we present the variation of these quantities for different values of the parameters \(a_0\) and M. It can be shown that the weak energy condition is violated near the origin which is a common feature for all the rotating black holes. Further investigation shows that the quantity \(\rho \) is positive when

$$\begin{aligned} r \ge 2M_{BH}, \end{aligned}$$
(A.30)

while \(\rho + p_T\) is positive when

$$\begin{aligned} r \ge \frac{1}{6} \left( \frac{4 a_{0}^2+12 a_{0} (M_{BH}-2 M)+9 \left( M^2-6 M M_{BH}+M_{BH}^2\right) }{\root 3 \of {A}}+\root 3 \of {A}-4 a_{0}+3 M+3 M_{BH}\right) , \end{aligned}$$
(A.31)

where we have

$$\begin{aligned} A&= 9 M \left( 10 a_{0}^2+42 a_{0} M_{BH}+45 M_{BH}^2\right) -27 M^2 (4 a_{0}+9 M_{BH})\nonumber \\&\quad +(2 a_{0}+3 M_{BH})^3+27 M^3 \nonumber \\&\quad + 18 \sqrt{M} (a_{0}+2 M_{BH}) \left( 9 M_{BH} \left( 4 a_{0}^2+2 a_{0} M-M^2\right) +a_{0}^2 (8 a_{0}-3 M) \right. \nonumber \\&\quad \left. + 54 M_{BH}^2 (a_{0}+M)+27 M_{BH}^3 \right) ^{1/2}. \end{aligned}$$
(A.32)

Analysing \(\rho + p_T\) numerically for the different values of the involved parameters \(a_0\) and M, we find that the quantity \(\rho + p_T\) is positive for the values \(r > 1.5 \) which is observable from Fig. 6. Finally, we remark that \(\rho \underset{r \rightarrow +\infty }{\longrightarrow }\ 0\) and \(\rho + p_T \underset{r \rightarrow +\infty }{\longrightarrow }\ 0\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Balali, A., Benali, M. & Oualaid, M. Deflection angle and shadow of slowly rotating black holes in galactic nuclei. Gen Relativ Gravit 56, 21 (2024). https://doi.org/10.1007/s10714-024-03205-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-024-03205-z

Keywords

Navigation