Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-28T06:41:42.269Z Has data issue: false hasContentIssue false

Characterisation, axial anisotropy, and formation conditions of celestine minerals from the Jabal Eghei (Nuqay) late Neogene – Pleistocene volcanic province, southeastern edge of the Sirt Basin, southern Libya: Constraints on the mineralogical geothermometer

Published online by Cambridge University Press:  28 November 2023

Pavle Tančić
Affiliation:
University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department for Catalysis and Chemical Engineering-National Institute of the Republic of Serbia, Njegoševa 12, 11000 Belgrade, Serbia Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia
Maja Milošević
Affiliation:
Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
Darko Spahić*
Affiliation:
Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia
Bojan Kostić
Affiliation:
Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
Aleksandar Kremenović
Affiliation:
Faculty of Mining and Geology, University of Belgrade, Đušina 7, 11000 Belgrade, Serbia
Maja Poznanović-Spahić
Affiliation:
Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia
Jovan Kovačević
Affiliation:
Geological Survey of Serbia, Rovinjska 12, 11000 Belgrade, Serbia
*
Corresponding author: Dr Darko Spahić, E-mail: darkogeo2002@hotmail.com

Abstract

Five celestine crystals were sampled from the (palaeo)surface intervening between the late Miocene to Pleistocene basaltic sequences of the Jabal Eghei (Nuqay) volcanic province in southern Libya and then characterised by applying a combination of the SEM–WDS, ICP/OES, PXRD and IR methods. Colour variations and related minerogenetic frameworks were also investigated. Three samples have greenish-blue-to-blue colour (480.4–482.5 nm), whereas the other two samples have blue–green colour (cyan; 489.1–494.1 nm). The colour purity ranges from 1.36–7.16. Their composition is similar, end-member celestine, in which only 1.6–4.1 at.% of Sr2+ content was substituted by Pb2+ (0.7–0.9 at.%), Ba2+ (0.5–0.7 at.%) and Ca2+ (0.2–0.8 at.%). Three samples contained vacancies, from 1.0 to 1.9 at.%. The content of other chemical elements is minor. The resulting unit-cell parameters have the ranges: a0 = 8.3578(9)–8.3705(6) Å; b0 = 5.3510(5)–5.3568(4) Å; c0 = 6.8683(7)–6.8767(2) Å and V0 = 307.17(5)–308.34(4) Å3. The PXRD and IR results are mainly in accordance with the SEM–WDS results, with a high level of correlation. However, a few discrepancies were found, producing several possible interpretations, the primary cause being a slight unit-cell axial anisotropy i.e. thermal expansion. As a consequence these results yield a new geothermometric tool that is based on the unit-cell axial anisotropy. The celestines investigated were formed during a Miocene intraplate volcanism with basaltic magmas, and associated brines lifted by the structural conduits (normal faults crosscutting the Sirt basin). The Sr-bearing fluids then poured into and over the faulted and fractured lagoon-type gypsum, anhydrite Eocene sediments. The celestine mineralisation formed within a ~368–430 K (~95–157°C) temperature range. The celestine formed at slightly elevated temperature and pressure conditions, close to the shallow subsurface environment (over 250 bars).

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, A.M., Van Wees, J.D., Van Dijk, P.M. and Cloetingh, S.A. (2008) Tectonics and subsidence evolution of the Sirt Basin, Libya. AAPG Bulletin, 92, https://doi.org/10.1306/03310806070CrossRefGoogle Scholar
Abdusahmin, F.A. (2020) Geology and Potentiality of Basalts in Jabal Eghei Area (Libya). PhD dissertation, Faculty of Mining and Geology, Belgrade, Serbia.Google Scholar
Abouessa, A., Pelletier, J., Duringer, P., et al. (2012) New insight into the sedimentology and stratigraphy of the Dur At Talah tidal-fluvial transition sequence (Eocene–Oligocene, Sirt Basin, Libya). Journal of African Earth Sciences, 65, 7290. https://doi.org/10.1016/j.jafrearsci.2012.02.004CrossRefGoogle Scholar
Allouche, F., Ammous, A., Tlili, A. and Kallel, N. (2023) Uranium-bearing celestine and barite in the Upper-Paleocene deposits of the Siouf-Cherahil sector: stratigraphic distribution, geochemical, and mineralogical characterization. Carbonates and Evaporites, 38, https://doi.org/10.1007/s13146-023-00857-xCrossRefGoogle Scholar
Álvaro, J.J., Ezzouhairi, H., Vennin, E., Ribeiro, M.L., Clausen, S., Charif, A., Ait Ayad, N. and Moreira, M.E. (2006) The Early-Cambrian Boho volcano of the El Graara massif, Morocco: Petrology, geodynamic setting and coeval sedimentation. Journal of African Earth Sciences, 44, 396410, https://doi.org/10.1016/j.jafrearsci.2005.12.008CrossRefGoogle Scholar
Anenburg, M., Bialik, O.M., Vapnik, Y., Chapman, H.J., Antler, G., Katzir, Y. and Bickle, M.J. (2014) The origin of celestine–quartz–calcite geodes associated with a basaltic dyke, Makhtesh Ramon, Israel. Geological Magazine, 151, 798815, https://doi.org/10.1017/S0016756813000800CrossRefGoogle Scholar
Antao, S.M. (2012) Structural trends for celestite (SrSO4), anglesite (PbSO4), and barite (BaSO4): Confirmation of expected variations within the SO4 groups. American Mineralogist, 97, 661665, http://dx.doi.org/10.2138/am.2012.3905CrossRefGoogle Scholar
Ariza-Rodríguez, N., Rodríguez-Navarro, A.B., de Hoces M., Calero, Martin, J.M. and Muñoz-Batista, M.J. (2022) Chemical and Mineralogical Characterization of Montevive Celestine Mineral. Minerals, 12, 1261, https://doi.org/10.3390/min12101261CrossRefGoogle Scholar
Baskina, V.A., Volchanskaya, I.K., Frikh-Khar, D.I. and Yarmolyuk, V.V. (1978) Potassic alkaline-basic and alkaline volcanic rocks of Southern Mongolia. International Geology Review, 20, 14261440, https://doi.org/10.1080/00206817809471519CrossRefGoogle Scholar
Bérar, J.F. and Lelann, P. (1991) ESD's and estimated probable error obtained in Rietveld refinements with local correlations. Journal of Applied Crystallography, 24, 15, https://doi.org/10.1107/S0021889890008391CrossRefGoogle Scholar
Bernstein, L.R. (1979) Coloring mechanisms in celestite. American Mineralogist, 64, 160168.Google Scholar
Bershov, L.V. and Marfunin, A.S. (1967) Electron-spin resonance of electron-hole centres in minerals. Doklady Akademii Nauk SSSR, 173, 410412.Google Scholar
Bishop, J.L. and Murad, E. (2005) The visible and infrared spectral properties of jarosite and alunite. American Mineralogist, 90, 11001107, https://doi.org/10.2138/am.2005.1700CrossRefGoogle Scholar
Brigatti, M.F., Galli, E. and Medici, L. (1997) Ba-rich celestine: new data and crystal structure refinement. Mineralogical Magazine, 61, 447451, https://doi.org/10.1180/minmag.1997.061.406.10CrossRefGoogle Scholar
Capitanio, F.A., Faccenna, C. and Funiciello, R. (2009) The opening of Sirte basin: Result of slab avalanching? Earth and Planetary Science Letters, 285, 210216, https://doi.org/10.1016/j.epsl.2009.06.019CrossRefGoogle Scholar
Clark, R.N. (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. Pp. 358 in Manual of Remote Sensing, Remote Sensing for the Earth Sciences, 3 (Rencz, A.N., editor). John Wiley and Sons, New York.Google Scholar
Commission Internationale de l'Eclairage (1932) Commission Internationale de l'Eclairage Proceedings. Huitième session, Cambridge, UK, 1931. Cambridge University Press, Cambridge, UK [pp. 1929].Google Scholar
Curzi, M., Caracausi, A., Rossetti, F., et al. (2022) From fossil to active hydrothermal outflow in the back-arc of the central Apennines (Zannone Island, Italy). Geochemistry, Geophysics, Geosystems, 23, e2022GC010474, https://doi.org/10.1029/2022GC010474CrossRefGoogle Scholar
Cvetković, V., Toljić, M., Ammar, N.A., Rundić, L. and Trish, K.B. (2010) Petrogenesis of the eastern part of the Al Haruj basalts (Libya). Journal of African Earth Sciences, 58, 3750, https://doi.org/10.1016/j.jafrearsci.2010.01.006CrossRefGoogle Scholar
Cvetković, V., Radivojević, M., Prelević, D., Toljić, M. and Turki, S.M. (2022) An insight into the evolution of the lithospheric mantle of south Saharan metacraton: Mantle xenoliths from Jabal Eghei Volcanic Complex, Libya. Journal of Volcanology and Geothermal Research, 432, 107691, https://doi.org/10.1016/j.jvolgeores.2022.107691CrossRefGoogle Scholar
Cvetković, Ž. and Tančić, P. (2019) Mineralogical and crystallographic characteristics of bauxites from some Grebnik's (Metohija, Serbia) ore deposits. Geološki anali Balkanskoga poluostrva, 80, 4561, https://doi.org/10.2298/GABP19010045CCrossRefGoogle Scholar
Dai, S., Li, T., Seredin, V.V., Ward, C.R., et al. (2014) Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. International Journal of Coal Geology, 121, 5378, https://doi.org/10.1016/j.coal.2013.11.001CrossRefGoogle Scholar
Deer, W., Howie, R. and Zussman, J. (2013) Celestine. P. 444 in An Introduction to the Rock-Forming Minerals, 3rd ed. The Mineralogical Society of GB and Ireland, London, UK.CrossRefGoogle Scholar
Dhote, P., Bhan, U. and Verma, D. (2021) Genetic model of carbonatite hosted rare earth elements mineralization from Ambadongar Carbonatite Complex, Deccan Volcanic Province, India. Ore Geology Reviews, 135, 104215, https://doi.org/10.1016/j.oregeorev.2021.104215CrossRefGoogle Scholar
Doelter, C. (1915) Die Farben der Mineralien. Fried. Vieweg und Sohn, Braunschweig, Germany.Google Scholar
El-Khatri, F., El-Ghali, M.A.K., Mansurbeg, H., Morad, S., Ogle, N. and Kalin, R.M. (2015) Diagenetic alterations and reservoir quality evolution OF lower cretaceous fluvial sandstones: Nubian formation, Sirt basin, north-central Libya. Journal of Petroleum Geology, 38, 217239, https://doi.org/10.1111/jpg.12607CrossRefGoogle Scholar
El-Sherif, A.M. (2013) Mineralogical characterization of the alteration facies at Gabal El-Missikat Area, Central Eastern Desert, Egypt. Nuclear Sciences Scientific Journal, 2, 121, https://doi.org/10.21608/nssj.2013.30976CrossRefGoogle Scholar
Elshaafi, A. and Gudmundsson, A. (2016) Volcano-tectonics of the Al Haruj Volcanic Province, Central Libya. Journal of Volcanology and Geothermal Research, 325, 189202, https://doi.org/10.1016/j.jvolgeores.2016.06.025CrossRefGoogle Scholar
Elshaafi, A. and Gudmundsson, A. (2017) Distribution and size of lava shields on the Al Haruj al Aswad and the Al Haruj al Abyad Volcanic Systems, Central Libya. Journal of Volcanology and Geothermal Research, 338, 4662, https://doi.org/10.1016/j.jvolgeores.2017.03.012CrossRefGoogle Scholar
Forjanes, P., Astilleros, J.M. and Fernández-Díaz, L. (2020a) The formation of barite and celestite through the replacement of gypsum. Minerals, 10, 189, https://doi.org/10.3390/min10020189CrossRefGoogle Scholar
Forjanes, P., Gómez-Barreiro, J., Morales, J., Manuel Astilleros, J., Fernández-Díaz, L. (2020b) Epitactic growth of celestite on anhydrite: substrate induced twinning and morphological evolution of aggregates. CrystEngComm, 22, 57435759, https://doi.org/10.1039/D0CE00755BCrossRefGoogle Scholar
Friend, J.N. and Allchin, J.P. (1939) Colour of celestine. Nature, 144, 633, https://doi.org/10.1038/144633a0CrossRefGoogle Scholar
Friend, J.N. and Allchin, J.P. (1940) Colloidal gold as a colouring principle in minerals. Mineralogical Magazine, 25, 584596 https://doi.org/10.1180/minmag.1940.025.170.03CrossRefGoogle Scholar
Fristad, K.E., Svensen, H.H., Polozov, A. and Planke, S. (2017) Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska Basin, Eastern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 468, 7687, https://doi.org/10.1016/j.palaeo.2016.11.025CrossRefGoogle Scholar
Gadsden, J.A. (1975) Infrared Spectra of Minerals and Related Inorganic Compounds. Butterworth and Co. (Publishers) Ltd., London.Google Scholar
Garcia, M. O., Weis, D., Jicha, B. R., Ito, G. and Hanano, D. (2016). Petrology and geochronology of lavas from Ka'ula Volcano: implications for rejuvenated volcanism of the Hawaiian mantle plume. Geochimica et Cosmochimica Acta, 185, 278301. http://dx.doi.org/10.1016/j.gca.2016.03.025CrossRefGoogle Scholar
Girard, A., Stekiel, M., Spahr, D., et al. (2019) Structural, elastic and vibrational properties of celestite, SrSO4, from synchrotron x-ray diffraction, thermal diffuse scattering and Raman scattering. Journal of Physics: Condensed Matter, 31, 055703, https://doi.org/10.1088/1361-648X/aaf0efGoogle ScholarPubMed
Glazner, A.F. (1988) Stratigraphy, structure, and potassic alteration of Miocene volcanic rocks in the Sleeping Beauty area, central Mojave Desert, California. Geological Society of America Bulletin, 100, 424435, https://doi.org/10.1130/0016-7606(1988)100<0424:SSAPAO>2.3.CO;22.3.CO;2>CrossRefGoogle Scholar
Goldish, E. (1989) X-ray diffraction analysis of barium-strontium sulfate (barite-celestite) solid solutions. Powder Diffraction, 4, 214216, https://doi.org/10.1017/S0885715600013750CrossRefGoogle Scholar
Götze, J., Möckel, R. and Pan, Y. (2020) Mineralogy, geochemistry and genesis of agate—A review. Minerals, 10, 1037, https://doi.org/10.3390/min10111037CrossRefGoogle Scholar
Guirguis, L.A. (1987) Infrared vibrational sulphate band shift correlation in alkaline sulphate minerals. TIZ-Fachberichte, 111, 339340.Google Scholar
Gumati, M.S. (2021) Basin architecture and tectonic controls on the Early Cretaceous Sarir Sandstone Reservoir, Eastern Sirt Basin, Libya. Journal of African Earth Sciences, https://doi.org/10.1016/j.jafrearsci.2020.104089CrossRefGoogle Scholar
Gumati, Y.D. and Nairn, A.E.M. (1991) Tectonic subsidence of the Sirte basin, Libya. Journal of Petroleum Geology, 14, 93102, https://doi.org/10.1111/j.1747-5457.1991.tb00301.xCrossRefGoogle Scholar
Hadji, F., Marok, A. and Samet, A.M. (2019) Geochemistry and mineralogy of the Miocene and Pliocene sediments of the Northern Margin of the Lower Chelif Basin (Western Tellian Domain, North Algeria). Pp. 109112 in Petrogenesis and Exploration of the Earth's Interior. Proceedings of the 1st Springer Conference of the Arabian Journal of Geosciences (CAJG-1), Tunisia 2018, Springer International Publishing.CrossRefGoogle Scholar
Hallett, D. (2002) Petroleum Geology of Libya. Elsevier, Amsterdam, 503 pp.Google Scholar
Hanor, J.S. (2000) Barite-celestine geochemistry and environments of formation. Pp. 193275 in Sulfate Minerals-Crystallography, Geochemistry, and Environmental Significance (Alpers, CN, Jambor, JL and Nordstrom, DK, editors). Reviews in Mineralogy and Geochemistry 40. Mineralogical Society of America, Chantilly, Virginia, USA.Google Scholar
Hanor, J.S. (2004) A model for the origin of large carbonate-and evaporite-hosted celestine (SrSO4) deposits. Journal of Sedimentary Research, 74, 168175, https://doi.org/10.1306/092203740168CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Anhydrous sulphates; I, Refinement of the crystal structure of celestite with an appendix on the structure of thenardite. The Canadian Mineralogist, 13, 181187.Google Scholar
Helvaci, C. (1995) Stratigraphy, mineralogy, and genesis of the Bigadic borate deposits, western Turkey. Economic Geology, 90, 12371260, https://doi.org/10.2113/gsecongeo.90.5.1237CrossRefGoogle Scholar
Herzberg, G. (1945) Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand, New YorkGoogle Scholar
Hezel, A. and Ross, S.D. (1966) Forbidden transitions in the infra-red spectra of tetrahedral anions - III. Spectra-structure correlations in perchlorates, sulfates, and phosphates of the formula MXO4. Spectrochimica Acta, 22, 19491961, https://doi.org/10.1016/0371-1951(66)80183-2CrossRefGoogle Scholar
Hou, Z., Zaw, K., Pan, G., Mo, X., Xu, Q., Hu, Y. and Li, X. (2007) Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types. Ore Geology Reviews, 31, 4887, https://doi.org/10.1016/j.oregeorev.2004.12.007CrossRefGoogle Scholar
Isetti, G. (1970) Studio Sulla Colorazione Della Celestina. Doriana, 4, no. 194, 17.Google Scholar
Jacobsen, S.D., Smyth, J.R., Swope, R.J. and Downs, R.T. (1998) Rigid-body character of the SO4 groups in celestine, anglesite and barite. The Canadian Mineralogist, 36, 10531060.Google Scholar
Khalifa, M. and Morad, S. (2012) Impact of structural setting on diagenesis of fluvial and tidal sandstones: the Bahi Formation, Upper Cretaceous, NW Sirt Basin, North Central Libya. Marine and Petroleum Geology, 38, 211231, https://doi.org/10.1016/j.marpetgeo.2011.05.006CrossRefGoogle Scholar
Kloprogge, J.T., Ruan, H., Duong, L.V. and Frost, R.L. (2001) FT-IR and Raman microscopic study at 293 K and 77 K of celestine, SrSO4, from the middle Triassic limestone (Muschelkalk) in Winterswijk, The Netherlands. Geologie en Mijnbouw/Netherlands Journal of Geosciences, 80(2), 4147, https://doi.org/10.1017/S0016774600022307CrossRefGoogle Scholar
Kovačević, J., Tereesh, M.B., Radenković, M. and Miljanić Š.S. (2013) Discovery of uranium mineralizations in the rhyolite-granite complex in the Jabal Eghei area of southern Libya. Journal of the Serbian Chemical Society, 78, 741758, https://doi.org/10.2298/JSC120919124KCrossRefGoogle Scholar
Kuang, Y., Xu, J., Zhao, D., Fan, D., Li, X., Zhou, W. and Xie, H. (2017) The high-pressure elastic properties of celestine and the high-pressure behavior of barite-type sulphates. High Temperatures-High Pressures, 46, 481495.Google Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118, https://doi.org/10.2138/am.2007.2170CrossRefGoogle Scholar
Le Bail, A., Duroy, H. and Fourquet, J.L. (1988) Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 23, 447452, https://doi.org/10.1016/0025-5408(88)90019-0CrossRefGoogle Scholar
Le Heron, D.P., Meinhold, G. and Bergig, K.A. (2013) Neoproterozoic–Devonian stratigraphic evolution of the eastern Murzuq Basin, Libya: a tale of tilting in the central Sahara. Basin Research, 25, 5273, https://doi.org/10.1111/j.1365-117.2012.00555.xCrossRefGoogle Scholar
Li, B., Xu, J., Chen, W., Ye, Z., Huang, S., Fan, D., Zhou, W. and Xie, H. (2018) Compressibility and expansivity of anglesite (PbSO4) using in situ synchrotron X-ray diffraction at high-pressure and high-temperature conditions. Physics and Chemistry of Minerals, 45, 883893, https://doi.org/10.1007/s00269-018-0970-1CrossRefGoogle Scholar
Li, Y.F., Ouyang, J.H. and Zhou, Y. (2008) Novel fabrication of monodispersed peanut-type celestine particles using Sr-EDTA chelating precursors. Materials Chemistry and Physics, 111, 508512, https://doi.org/10.1016/j.matchemphys.2008.05.008CrossRefGoogle Scholar
Maksimović, T., Tančić, P., Maksimović, J., Mara, D., Ilić, M., Van Deun, R., Lj, Joksović. and Pagnacco, M. (2023) Novel cerium and praseodymium doped phosphate tungsten bronzes: Synthesis, characterization, the behavior in the Briggs-Rauscher reaction and photoluminescence properties. Optical Materials, 143, 114125, https://doi.org/10.1016/j.optmat.2023.114125CrossRefGoogle Scholar
McFadden, L.D., Wells, S.G. and Jercinovich, M.J. (1987) Influences of eolian and pedogenic processes on the origin and evolution of desert pavements. Geology, 15, 504508, https://doi.org/10.1130/0091-7613(1987)15<504:IOEAPP>2.0.CO;22.0.CO;2>CrossRefGoogle Scholar
Miyake, M., Minato, I., Morikawa, H. and Iwai, S. (1978) Crystal structures and sulphate force constants of barite, celestite, and anglesite. American Mineralogist, 63, 506510.Google Scholar
Moenke, H. (1962) Mineralspektren I: Die Ultrarotabsorption der häufigsten und wirtschaftlich wichtigsten Halogenid-, Oxyd-, Hydroxyd-, Carbonat-, Nitrat-, Borat-, Sulfat-, Chromat-, Wolframat-, Molybdat-, Phosphat-, Arsenat-, Vanadat- und Silikatmineralien im Spektralbereich 400–4000 cm1. Akademie Verlag, Berlin.Google Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley and Sons, New YorkGoogle Scholar
Nakamura, D., Kobayashi, T., Shimobayashi, N., Svojtka, M. and Hirajima, T. (2010) Sr-sulphate and associated minerals found from kyanite-bearing eclogite in the Moldanubian Zone of the Bohemian Massif, Czech Republic. Journal of Mineralogical and Petrological Sciences, 105, 251261, https://doi.org/10.2465/jmps.090817CrossRefGoogle Scholar
Omori, K. (1968) Infrared diffraction and the far infrared spectra of anhydrous sulfates. Mineralogical Journal, 5, 334354, https://doi.org/10.2465/minerj1953.5.334CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) Dana's System of Mineralogy, 7th ed., v. II. John Wiley & Sons, London [pp. 415420].Google Scholar
Patel, A.R. and Bhat, H.L. (1972) Growth of single crystals of BaSO4 and SrSO4 from gels. Journal of Crystal Growth, 12, 288290, https://doi.org/10.1016/0022-0248(72)90299-0CrossRefGoogle Scholar
Radivojević, M., Toljić, M., Turki, S.M., Bojić, Z., Šarić, K. and Cvetković, V. (2015) Neogene to Quaternary basalts of the Jabal Eghei (Nuqay) area (south Libya): Two distinct volcanic events or continuous volcanism with gradual shift in magma composition?. Journal of Volcanology and Geothermal Research, 293, 5774, http://dx.doi.org/10.1016/j.jvolgeores.2015.02.003CrossRefGoogle Scholar
Reolid, M., Abad, I. and Benito, M.I. (2019) Upper Pliensbachian-Lower Toarcian methane cold seeps interpreted from geochemical and mineralogical characteristics of celestine concretions (South Iberian palaeo-margin). Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 1531, https://doi.org/10.1016/j.palaeo.2019.05.033CrossRefGoogle Scholar
Ross, S.D. (1972) Inorganic Infrared and Raman Spectra. McGraw-Hill Book Company (UK) Ltd., London.Google Scholar
Ross, S.D. (1974) Sulphates and other oxy-anions of group. Pp. 423444 in The Infrared Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society Monograph 4, Mineralogical Society of GB and Ireland, London, https://doi.org/10.1180/mono-4.18CrossRefGoogle Scholar
Rundić, Lj. and Dalub, H. (2007) Geological map of Libya 1:250 000. Sheet Dur Al Abrag (NG 345). Explanatory Booklet. Industrial Research Center, Tripoli. 110 pp.Google Scholar
Lj, Rundić., Toljić, M., Vasić, N., et al. (2012) Tertiary Formations of the SW Part of Sirt Basin: New Stratigraphic and Sedimentological Data. Geology of Southern Libya, 1, 153174.Google Scholar
Rusk, D.C. (2001) Libya: Petroleum potential of the underexplored basin centers—A twenty-first-century challenge. Pp. 429–452 in: Petroleum Provinces of the Twenty-First Century (Downey, MW, Threet, JC and Morgan, WA, editors). AAPG Memoir.Google Scholar
Schulman, J.H. and Compton, W.D. (1962) Color Centers in Solids. Macmillan, New York.Google Scholar
Serna, C.J., Cortina, C.P. and Ramos, J.V.G. (1986) Infrared and Raman study of alunite—Jarosite compounds. Spectrochimica Acta Part A, Molecular Spectroscopy, 42, 729734, https://doi.org/10.1016/0584-8539(86)80092-7CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica, A32, 751767, https://doi.org/10.1107/S0567739476001551CrossRefGoogle Scholar
Stromeyer, F. (1821) Untersuchungen über Mischung der Mineralkörper, vol. 1. Vandenhoeck und Ruprecht, Gottingen, Germany.Google Scholar
Takahashi, S., Seki, M. and Setoyama, K. (1993) Formation of SrSO4⋅½H2O in an SrSO4–H2O System and Its Solid Solution in a CaSO4–SrSO4–H2O System, Bulletin of the Chemical Society of Japan, 66(8), 22192224. https://www.journal.csj.jp/doi/10.1246/bcsj.66.2219CrossRefGoogle Scholar
Tančić, P. (2017) Comparison of the crystallographic-chemical characteristics of sphalerites from the Kiževak ore deposit with some other deposits, part I: Preliminary reconsideration about their formation conditions. Bulletin of Mines, CXIV, 101117, https://doi.org/10.25075/BM.2017.11Google Scholar
Tančić, P. (2018) Comparison of the crystallographic-chemical characteristics of sphalerites from the Kiževak ore deposit with some other deposits, part II: Construction of the four-component a0-FeS-P-T diagram (option I) and determination of the formation conditions. Bulletin of Mines, CXV, 5973, https://doi.org/10.25075/BM.2018.04Google Scholar
Tančić, P. and Kremenović, A. (2022) Rietveld crystal structure refinement of the natural rhombohedral grossular-andradite garnet from Serbia. Geological Quarterly, 66, 1639, https://gq.pgi.gov.pl/article/view/33000CrossRefGoogle Scholar
Tančić, P., Dimitrijević, R., Poznanović, M., Pačevski, A. and Sudar, S. (2012) Crystal structure and chemical composition of ludwigite from Vranovac ore deposit (Boranja Mountain, Serbia). Acta Geologica Sinica-English Edition, 86, 15241538, https://doi.org/10.1111/1755-6724.12020CrossRefGoogle Scholar
Tančić, P., Kremenović, A. and Vulić, P. (2020) Structural dissymmetrization of optically anisotropic Grs64±1Adr36±1Sps2 grandite from Meka Presedla (Kopaonik Mt., Serbia). Powder Diffraction, 35, 716, https://doi.org/10.1017/S0885715619000897CrossRefGoogle Scholar
Tančić, P., Dušanić, S. and Erić, S. (2023) Orthorhombic crystal structure of grossular garnet (Suva Česma, Western Serbia): Evidence from the Rietveld refinement. Powders, 2, 387402, https://doi.org/10.3390/powders2020023CrossRefGoogle Scholar
Tančić, P.I., Spahić, D.N., Jovanović, D., Ćirić A., Poznanović-Spahić M. and Vasić N. (2021) Occurrences and characterization of alunite group minerals from the Lece-Radan Oligo-Miocene volcanic complex (Serbia). Geological Quarterly, 65, https://gq.pgi.gov.pl/article/view/29032Google Scholar
Tekin, E. (2001) Stratigraphy, geochemistry and depositional environment of the celestine-bearing gypsiferous formations of the Tertiary Ulaş-Sivas Basin, East-Central Anatolia (Turkey). Turkish Journal of Earth Sciences, 10, 3549, https://journals.tubitak.gov.tr/earth/vol10/iss1/3Google Scholar
Tiab, D. and Donaldson, E.C. (2012) Introduction to petroleum geology. Pp. 2783 in Petrophysics (Third Edition) (Tiab, Djebbar, Donaldson, Erle C., editors). Gulf Professional Publishing, ISBN 9780123838483, https://doi.org/10.1016/B978-0-12-383848-3.00002-5Google Scholar
Toljić, M. and Abu Agrab, F.M. (2014) Geological map of Libya 1:250 000. Sheet Wādi Eghei (NF 34-1). Explanatory Booklet. Industrial Research Center, Tripoli.Google Scholar
Toljić, M. and Abu Agrab, F.M. (2016) Explanatory Booklet, Sheet: Wadi Eghei (NF 34–1). Geological map of Libya 1:250,000. Industrial Research Center. Tripoli.Google Scholar
Toljić, M. and Turki, S.E.M. (2007a) Geological Map of Libya: Mourizidie Sheet (1:250 000) Explanatory Booklet. Industrial Research Centre, Tripoli.Google Scholar
Toljić, M. and Turki, S.E.M. (2007b) Explanatory booklet for the Geological map of Libya, 1:250 000 Sheet NF 34–1. 326 pp., Beograd, Tripoli.Google Scholar
Toljić, M., Marović, M., Kovačević, J., et al. (2007) Explanatory booklet for the Geological map of Libya, 1:250 000 Sheet NF 34–1. 326 pp., Beograd, Tripoli.Google Scholar
Tortelli, G., Gioncada, A., Pagli, C., Braschi, E., Gebru, E.F. and Keir, D. (2022) Constraints on the magma source and rift evolution from geochemistry of the Stratoid flood basalts (Afar, Ethiopia). Geochemistry, Geophysics, Geosystems, 23, e2022GC010434, https://doi.org/10.1029/2022GC010434CrossRefGoogle Scholar
van Der Meer, F. and Cloetingh, S. (1993) Intraplate stresses and the subsidence history of the Sirte Basin (Libya). Tectonophysics, 226, 3758, https://doi.org/10.1016/0040–1951(93)90109-WCrossRefGoogle Scholar
Vasić, N. and Sheriff, K.A. (2007) Geological map of Libya 1: 250,000. Sheet: Dur-At-Talah (NG 349) Explanatory Booklet. Industrial Research Centre, Libya. Tripoli. 180pp.Google Scholar
Vassallo, A.M. and Finnie, K.S. (1992) Infrared emission spectroscopy of some sulfate minerals. Applied Spectroscopy, 46, 14771482, https://doi.org/10.1366/000370292789619296CrossRefGoogle Scholar
Warr, L.N. (2021) IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320, https://doi.org/10.1180/mgm.2021.43CrossRefGoogle Scholar
Wittstein, G.C. (1856) Ueber die Ursache der blauen Farbe des Coelestins. Vierteljahresschrift für Praktische Pharmacie, 5, 286287.Google Scholar
Ye, Z., Li, B., Chen, W., et al. (2019) Phase transition and thermoelastic behavior of barite-group minerals at high-pressure and high-temperature conditions. Physics and Chemistry of Minerals, 46, 607621, https://doi.org/10.1007/s00269-019-01026-0CrossRefGoogle Scholar
Zhu, Q., Cook, N.J., Xie, G., Ciobanu, C.L., Gilbert, S.E., Wade, B. and Xu, J. (2022) Textural and geochemical analysis of celestine and sulfides constrain Sr-(Pb-Zn) mineralization in the Shizilishan deposit, eastern China. Ore Geology Reviews, 144, 104814, https://doi.org/10.1016/j.oregeorev.2022.104814CrossRefGoogle Scholar
Supplementary material: File

Tančić et al. supplementary material

Tančić et al. supplementary material
Download Tančić et al. supplementary material(File)
File 3.6 MB