Skip to main content
Log in

Mechanism and reactivity of the acyl chloride–alcohol system in the homogeneous phase and at the phase boundary

  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The present work is devoted to the search for energetically more favorable ways of the alcoholysis of acyl chlorides in a homogeneous medium and at the phase boundary. The implementation of an advantageous path is carried out by including a third molecule in the process: a reagent or a product. Aliphatic acyl chlorides are involved in the formation of termolecular hydrogen-bonded complexes, which leads to a decrease in reaction barriers and to the appearance of the probability of the reaction proceeding through the intermediate. In the alcoholysis of benzoyl chloride in a homogeneous medium, the addition of a third molecule does not speed up the reaction due to steric hindrances. A new principle of the action of a nonplanar adsorbent on the reaction system to control the reaction was proposed. In the force field of silica, the resulting hydrogen bonds and dispersion forces change the geometry of benzoyl chloride, which can significantly increase the efficiency of the process. The selectivity of the reaction is determined by the catalytic action of hydrogen bonds at the phase boundary. Separate stages of the process that affect the energy profile of the reaction have been established, which was not reported earlier.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.B. Smith, March’s advanced organic chemistry: reactions, mechanisms, and structure (Wiley, Hoboken, NY, 2020)

    Google Scholar 

  2. A. Kivinen, The Chemistry of acyl halides (Bristol, Wiley, UK, 1972), p.177

    Book  Google Scholar 

  3. T.W. Bentley, R.O. Jones, D.H. Kang, I.S. Koo, J. Phys. Org. Chem. 22, 799 (2009). https://doi.org/10.1002/poc.1522

    Article  CAS  Google Scholar 

  4. D.P.N. Satchell, R.S. Satchell, The chemistry of acyl halides (Bristol, Wiley, UK, 1972), p.103

    Book  Google Scholar 

  5. A.A. Granovsky, Firefly version 8, available from http://classic.chem.msu.su/gran/firefly/index.html

  6. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)

    Article  CAS  Google Scholar 

  7. A.D. Becke, Phys Rev. A: At., Mol., Opt. Phys. 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098

    Article  ADS  CAS  Google Scholar 

  8. C. Lee, W. Yang, R.G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  CAS  Google Scholar 

  9. A. Karton, R.J. O’Reilly, L. Radom, Phys. Chem. A 116, 4211 (2012). https://doi.org/10.1021/jp301499y

    Article  CAS  Google Scholar 

  10. T.H. Dunning Jr, J. Chem. Phys. 90, 1007 (1989). https://doi.org/10.1063/1.456153

    Article  ADS  Google Scholar 

  11. E.V. Anslyn, D.A. Dougherty, Modern physical organic chemistry (University Science Books, USA, California, 2006)

    Google Scholar 

  12. V.A. Terent’ev, V.V. Varfolomeeva, Rus. J. Gen. Chem. 62, 1582 (1992)

    CAS  Google Scholar 

  13. V.A. Terent’ev, V.V. Varfolomeeva, Rus. J. Gen. Chem. 70, 462 (2000)

    Google Scholar 

  14. V.V. Varfolomeeva, A.V. Terentev, Rus. Chem. Bull. 70, 693 (2021). https://doi.org/10.1007/s11172-021-3138-y

    Article  CAS  Google Scholar 

  15. V.V. Varfolomeeva, Rus. J. Gen. Chem. 88, 855 (2018). https://doi.org/10.1134/S107036321805002X

    Article  CAS  Google Scholar 

  16. V.V. Varfolomeeva, V.A. Terent’ev, Rus. J. Gen. Chem. 68, 1999 (1998)

    Google Scholar 

  17. V.A. Terent’ev, V.V. Varfolomeeva, Rus. J. Gen. Chem. 66, 2010 (1996)

    Google Scholar 

  18. E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem. 83, 1637 (2011). https://doi.org/10.1351/PAC-REC-10-01-02

    Article  CAS  Google Scholar 

  19. R.T. Morrison, R.S. Boyd, Organic chemistry (Allyn and Bacon, Boston, 1973)

    Google Scholar 

  20. T.W. Bentley, G. Llewellyn, J.A. McAlister, J. Org. Chem. 61, 7927 (1996). https://doi.org/10.1021/jo9609844

    Article  PubMed  CAS  Google Scholar 

  21. T.W. Bentley, H.C. Harris, Z.H. Ryu, G.T. Lim, D.D. Sung, S.R. Szajda, J. Org. Chem. 70, 8963 (2005). https://doi.org/10.1021/jo0514366

    Article  PubMed  CAS  Google Scholar 

  22. T.W. Bentley, R.O. Jones, J. Chem. Soc. Perkin Trans. 2, 2351 (1993). https://doi.org/10.1039/P29930002351

    Article  Google Scholar 

  23. V.V. Varfolomeeva, A.V. Terentev, Phys. Chem. Chem. Phys. 17, 24282 (2015). https://doi.org/10.1039/c5cp04295j

    Article  PubMed  CAS  Google Scholar 

  24. V.V. Varfolomeeva, A.V. Terentev, J. Struct. Chem. 58, 558 (2017). https://doi.org/10.1134/S0022476617030180

    Article  CAS  Google Scholar 

  25. J.S. Yadav, G.S. Reddy, D. Srinivas, K. Himabindu, Synt. Comm. 28, 2337 (1998). https://doi.org/10.1080/00397919808004286

    Article  CAS  Google Scholar 

  26. D.A. Vasilenko, E.B. Averina, N.A. Zefirov, B. Wobith, Y.K. Grishin, V.B. Rybakov, O.N. Zefirova, T.S. Kuznetsova, S.A. Kuznetsov, N.S. Zefirov, Mend. Comm. 27, 228 (2017). https://doi.org/10.1016/j.mencom.2017.05.003

    Article  CAS  Google Scholar 

  27. R. Ghosh, R.S. Maiti, A. Chakraborty, Tetrahedron Lett. 46, 147 (2005). https://doi.org/10.1016/j.tetlet.2004.10.164

    Article  CAS  Google Scholar 

  28. V.R. Choudhary, K.Y. Patil, S.K. Jana, J. Chem. Sci. 116, 175 (2004). https://doi.org/10.1007/BF02708222

    Article  CAS  Google Scholar 

  29. G. Sartori, R. Maggi, Chem. Rev. 106, 1077 (2006). https://doi.org/10.1021/cr040695c

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera V. Varfolomeeva.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

No animal/human studies were carried out in the present work.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2305 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varfolomeeva, V.V., Terentev, A.V. Mechanism and reactivity of the acyl chloride–alcohol system in the homogeneous phase and at the phase boundary. J IRAN CHEM SOC 21, 853–861 (2024). https://doi.org/10.1007/s13738-024-02969-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-024-02969-0

Keywords

Navigation