Skip to main content
Log in

A size-dependent axisymmetric plate element: application to MEMS

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This paper presents the formulation of a novel axisymmetric plate element capable of capturing size effects observed in micro-scaled structures. To establish the element formulation, a size-dependent beam element is considered, and by axisymmetric expansion of the model, the stiffness and mass matrices and force vector for an axisymmetric plate element are derived. Comparing the results of this model with those from literature and the outcomes of COMSOL confirms that the present FE formulation can accurately predict the static and dynamic behavior of microplates as well as macro-scale plates. Furthermore, a convergence analysis is performed which indicates that this model can accurately predict the static deflection and natural frequency of circular plates utilizing very low number of elements and consequently with low values of computation cost. As an example of real-world application, the model is applied to analysis of microelectromechanical devices and its accuracy is confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Karimzadeh, A., Rahaeifard, M.: Nonlinear vibrational analysis and linearization error investigation in size-dependent resonant pressure microsensors. Mech. Based Des. Struct (2023). https://doi.org/10.1080/15397734.2023.2272681

    Article  Google Scholar 

  2. Zhou, S.-M., Sheng, L.-P., Shen, Z.-B.: Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 86, 73–78 (2014). https://doi.org/10.1016/j.commatsci.2014.01.031

    Article  CAS  Google Scholar 

  3. Asadi Dereshgi, H., Dal, H., Sayan, M.E.: Analytical analysis of a circular unimorph piezoelectric actuator in the range of low voltages and pressures. Microsyst. Technol. 26(8), 2453–2464 (2020). https://doi.org/10.1007/s00542-020-04786-w

    Article  Google Scholar 

  4. Kong, S.: A review on the size-dependent models of micro-beam and micro-plate based on the modified couple stress theory. Arch. Comput. Method E 29(1), 1–31 (2022). https://doi.org/10.1007/s11831-021-09567-w

    Article  MathSciNet  Google Scholar 

  5. Ji, M., Wu, Y.-C., Ma, C.-C.: Theoretical analyses and numerical simulation of flexural vibration based on Reddy and modified higher-order plate theories for a transversely isotropic circular plate. Acta Mech. 232(7), 2825–2842 (2021). https://doi.org/10.1007/s00707-021-02973-y

    Article  MathSciNet  Google Scholar 

  6. Wei, L., Qing, H.: Bending, buckling and vibration analysis of Bi-directional functionally graded circular/annular microplate based on MCST. Compos. Struct. 292, 115633 (2022). https://doi.org/10.1016/j.compstruct.2022.115633

    Article  Google Scholar 

  7. Jallouli, A., Kacem, N., Najar, F., et al.: Modeling and experimental characterization of squeeze film effects in nonlinear capacitive circular microplates. Mech. Syst. Signal Process. 127, 68–88 (2019). https://doi.org/10.1016/j.ymssp.2019.02.060

    Article  ADS  Google Scholar 

  8. Caruntu, D.I., Oyervides, R.: Amplitude–frequency response of parametric resonance of electrostatically actuated MEMS clamped circular plate. Int. J. Non-Linear Mech. 149, 104310 (2023). https://doi.org/10.1016/j.ijnonlinmec.2022.104310

    Article  ADS  Google Scholar 

  9. Das, M., Bhushan, A.: Investigation of an electrostatically actuated imperfect circular microplate under transverse pressure for pressure sensor applications. Eng. Res. Expr. 3(4), 045023 (2021). https://doi.org/10.1088/2631-8695/ac3771

    Article  Google Scholar 

  10. Rai, A.K., Gupta, S.S.: Nonlinear vibrations of a thin isotropic circular plate subjected to moving point loads. J. Mech. Eng. Sci. 235(20), 4900–4912 (2021). https://doi.org/10.1177/0954406220976156

    Article  Google Scholar 

  11. Pazhouheshgar, A., Haghighatfar, Y., Moghanian, A.: Finite element method and analytical analysis of static and dynamic pull-in instability of a functionally graded microplate. J. Vib. Control 28(3–4), 425–438 (2022). https://doi.org/10.1177/1077546320980208

    Article  MathSciNet  Google Scholar 

  12. Raeisi Estabragh, E., Baradaran, G.H.: Analysis of large deflection of nanobeams based on the modified couple stress theory by using finite element method. Arch. Appl. Mech. 91(12), 4717–4734 (2021). https://doi.org/10.1007/s00419-021-02029-6

    Article  ADS  Google Scholar 

  13. Belounar, A., Boussem, F., Houhou, M.N., et al.: Strain-based finite element formulation for the analysis of functionally graded plates. Arch. Appl. Mech. 92(7), 2061–2079 (2022). https://doi.org/10.1007/s00419-022-02160-y

    Article  ADS  Google Scholar 

  14. Gupta, N.K.: Response simulations of clamped circular steel plates under uniform impulse and effects of axisymmetric stiffener configurations. Int. J. Impact Eng 159, 104049 (2022). https://doi.org/10.1016/j.ijimpeng.2021.104049

    Article  Google Scholar 

  15. Esen, I.: A new finite element for transverse vibration of rectangular thin plates under a moving mass. Finite Elem. Anal. Des. 66, 26–35 (2013). https://doi.org/10.1016/j.finel.2012.11.005

    Article  MathSciNet  Google Scholar 

  16. Moayeri, M., Darabi, B., Sianaki, A.H., et al.: Third order nonlinear vibration of viscoelastic circular microplate based on softening and hardening nonlinear viscoelastic foundation under thermal loading. Eur. J. Mech. A-Solid 95, 104644 (2022). https://doi.org/10.1016/j.euromechsol.2022.104644

    Article  ADS  MathSciNet  Google Scholar 

  17. Moayeri, M., Darabi, B., Hoseini Sianaki, A., et al.: Effect of small scale on nonlinear vibrations of viscoelastic circular microplate rested on nonlinear viscoelastic foundation. J. Aeronaut. Eng. 24(2), 152–166 (2022)

    Google Scholar 

  18. Fleck, N.A., Muller, G.M., Ashby, M.F., et al.: Strain gradient plasticity: theory and experiment. Acta Metal. Mater. 42(2), 475–487 (1994). https://doi.org/10.1016/0956-7151(94)90502-9

    Article  CAS  Google Scholar 

  19. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060 (2005). https://doi.org/10.1088/0960-1317/15/5/024

    Article  ADS  Google Scholar 

  20. Lam, D.C.C., Yang, F., Chong, A.C.M., et al.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003). https://doi.org/10.1016/S0022-5096(03)00053-X

    Article  ADS  Google Scholar 

  21. Esen, I.: Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory. Int. J. Mech. Sci. 188, 105937 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105937

    Article  Google Scholar 

  22. Esen, I., Özmen, R.: Thermal vibration and buckling of magneto-electro-elastic functionally graded porous nanoplates using nonlocal strain gradient elasticity. Compos. Struct. 296, 115878 (2022). https://doi.org/10.1016/j.compstruct.2022.115878

    Article  Google Scholar 

  23. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962). https://doi.org/10.1007/BF00253946

    Article  MathSciNet  Google Scholar 

  24. Yang, F., Chong, A.C.M., Lam, D.C.C., et al.: Couple stress based strain gradient theory for elasticity. Int. J. Solid. Struct. 39(10), 2731–2743 (2002). https://doi.org/10.1016/S0020-7683(02)00152-X

    Article  Google Scholar 

  25. Özarpa, C., Esen, I.: Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory. Math. Method Appl. Sci. (2020). https://doi.org/10.1002/mma.6812

    Article  Google Scholar 

  26. Koç, M.A., Esen, İ, Eroğlu, M.: Thermomechanical vibration response of nanoplates with magneto-electro-elastic face layers and functionally graded porous core using nonlocal strain gradient elasticity. Mech. Adv. Mater. Struct. (2023). https://doi.org/10.1080/15376494.2023.2199412

    Article  Google Scholar 

  27. Esen, I., Özmen, R.: Free and forced thermomechanical vibration and buckling responses of functionally graded magneto-electro-elastic porous nanoplates. Mech. Based Des. Struct. (2022). https://doi.org/10.1080/15397734.2022.2152045

    Article  Google Scholar 

  28. Li, Z., He, Y., Lei, J., et al.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018). https://doi.org/10.1016/j.ijmecsci.2018.03.035

    Article  Google Scholar 

  29. Rahaeifard, M., Kahrobaiyan, M., Asghari, M., et al.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sensor Actuators A-Phys. 171(2), 370–374 (2011)

    Article  CAS  Google Scholar 

  30. Romanoff, J., Reddy, J.: Experimental validation of the modified couple stress Timoshenko beam theory for web-core sandwich panels. Compos. Struct. 111, 130–137 (2014)

    Article  Google Scholar 

  31. Al-Furjan, M.S.H., Samimi-Sohrforozani, E., Habibi, M., et al.: Vibrational characteristics of a higher-order laminated composite viscoelastic annular microplate via modified couple stress theory. Compos. Struct. 257, 113152 (2021). https://doi.org/10.1016/j.compstruct.2020.113152

    Article  Google Scholar 

  32. Rahi, A.: Vibration analysis of multiple-layer microbeams based on the modified couple stress theory: analytical approach. Arch. Appl. Mech. 91(1), 23–32 (2021). https://doi.org/10.1007/s00419-020-01795-z

    Article  ADS  Google Scholar 

  33. Zhou, H., Jiang, H., Li, P., et al.: Thermoelastic damping in the size-dependent micro/nanobeam resonator with nonlocal dual-phase-lag heat conduction. Thin Wall. Struct. 169, 108437 (2021). https://doi.org/10.1016/j.tws.2021.108437

    Article  Google Scholar 

  34. Karimzadeh, A., Ahmadian, M.T., Rahaeifard, M.: Effect of size dependency on in-plane vibration of circular micro-rings. Sci. Iran 24(4), 1996–2008 (2017). https://doi.org/10.24200/SCI.2017.4289

    Article  Google Scholar 

  35. Karimzadeh, A., Roohi, R., Akbari, M.: Piezoelectric wind energy harvesting from vortex induced vibrations of an elastic beam. Sci. Iran (2022). https://doi.org/10.24200/SCI.2022.59718.6393

    Article  Google Scholar 

  36. Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T.: A Timoshenko beam element based on the modified couple stress theory. Int. J. Mech. Sci. 79, 75–83 (2014). https://doi.org/10.1016/j.ijmecsci.2013.11.014

    Article  Google Scholar 

  37. Wu, C.P., Lyu, Y.S.: An asymptotic consistent couple stress theory for the three-dimensional free vibration analysis of functionally graded microplates resting on an elastic medium. Math. Method Appl. Sci. 46(4), 4891–4919 (2023). https://doi.org/10.1002/mma.8810

    Article  ADS  MathSciNet  Google Scholar 

  38. Sahrawat, R.K., Duhan, A., Kumar, K.: Study of vibrations in micro-scale piezothermoelastic beam resonator utilising modified couple stress theory. Acta Mech. (2023). https://doi.org/10.1007/s00707-023-03575-6

    Article  MathSciNet  Google Scholar 

  39. Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T.: Strain gradient beam element. Finite Elem. Anal. Des. 68, 63–75 (2013). https://doi.org/10.1016/j.finel.2012.12.006

    Article  MathSciNet  Google Scholar 

  40. Karimzadeh, A., Ahmadian, M.T.: Vibrational characteristics of size-dependent vibrating ring gyroscope. Sci. Iran 25(6 Special Issue Dedicated to Professor Goodarz Ahmadi), 3151–3160 (2018). https://doi.org/10.24200/SCI.2018.20495

    Article  Google Scholar 

  41. Mohammadi, V., Ansari, R., Faghih Shojaei, M., et al.: Size-dependent dynamic pull-in instability of hydrostatically and electrostatically actuated circular microplates. Nonlinear Dynam. 73(3), 1515–1526 (2013). https://doi.org/10.1007/s11071-013-0882-z

    Article  MathSciNet  Google Scholar 

  42. Esen, I.: Dynamics of size-dependant Timoshenko micro beams subjected to moving loads. Int. J. Mech. Sci. 175, 105501 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105501

    Article  Google Scholar 

  43. Zhang, B., Li, H., Kong, L., et al.: Size-dependent static and dynamic analysis of Reddy-type micro-beams by strain gradient differential quadrature finite element method. Thin Wall. Struct. 148, 106496 (2020). https://doi.org/10.1016/j.tws.2019.106496

    Article  Google Scholar 

  44. Ma, Y., Gao, Y., Yang, W., et al.: Free vibration of a micro-scale composite laminated Reddy plate using a finite element method based on the new modified couple stress theory. Results Phys. 16, 102903 (2020). https://doi.org/10.1016/j.rinp.2019.102903

    Article  Google Scholar 

  45. Yang, L., Li, P., Fang, Y., et al.: A generalized methodology for thermoelastic damping in axisymmetric vibration of circular plate resonators covered by multiple partial coatings. Thin Wall. Struct. 162, 107576 (2021). https://doi.org/10.1016/j.tws.2021.107576

    Article  Google Scholar 

  46. Qing, H.: Well-posedness of two-phase local/nonlocal integral polar models for consistent axisymmetric bending of circular microplates. Appl. Math. Mech. 43(5), 637–652 (2022). https://doi.org/10.1007/s10483-022-2843-9

    Article  MathSciNet  Google Scholar 

  47. Lai, W.M., Rubin, D., Krempl, E.: Introduction to continuum mechanics. Butterworth-Heinemann (2009)

    Google Scholar 

  48. Logan, D.L.: A first course in the finite element method. Cengage Learning (2016)

    Google Scholar 

  49. Reddy, J.N.: Introduction to the finite element method. McGraw-Hill Education (2019)

    Google Scholar 

  50. Huebner, K.H., Dewhirst, D.L., Smith, D.E., et al.: The finite element method for engineers. Wiley (2001)

    Google Scholar 

  51. Rahaeifard, M., Ahmadian, M.T., Firoozbakhsh, K.: Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory. Appl. Math. Model. 39(21), 6694–6704 (2015). https://doi.org/10.1016/j.apm.2015.02.020

    Article  MathSciNet  Google Scholar 

  52. Reddy, J.N.: Theory and analysis of elastic plates and shells. CRC Press (2006)

    Book  Google Scholar 

  53. Leissa, A.W.: Vibration of plates. Vol. 160. Scientific and Technical Information Division, National Aeronautics and Space Administration (1969)

  54. Li, Z., Zhao, L., Jiang, Z., et al.: Mechanical behavior analysis on electrostatically actuated rectangular microplates. J. Micromech. Microeng. 25(3), 035007 (2015). https://doi.org/10.1088/0960-1317/25/3/035007

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M. Rahaeifard and A.Karimzadeh wrote the main manuscript text and prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ali Karimzadeh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaeifard, M., Karimzadeh, A. A size-dependent axisymmetric plate element: application to MEMS. Arch Appl Mech 94, 667–681 (2024). https://doi.org/10.1007/s00419-024-02544-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02544-2

Keywords

Navigation