Skip to main content
Log in

Dynamics of the perturbed restricted three-body problem with quantum correction and modified gravitational potential

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

This work investigates the dynamics of the modified circular restricted three-body problem. The triaxial shape of the massive body, a modified gravitational parameter, quantum correction effect, radiation pressure and small perturbations in the Coriolis and centrifugal forces are all taken into account. The impact of the considered parameters in the equilibrium points and their linear stability is studied. Some new significant results in the critical mass parameter, \(\mu _c\), are observed in the presence of perturbing parameters. It is found that the critical mass parameter, \(\mu _c\), increases in the presence of modified gravitational potential, and it slightly decreases due to the quantum correction effect. Analytical construction of periodic orbits around the collinear equilibrium points is performed. Additionally, analysis of the impact of perturbations on the shape of these periodic orbits is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The study does not report any data.

References

  1. Singh, J., Perdiou, A., Gyegwe, J.M., Perdios, E.: Periodic solutions around the collinear equilibrium points in the perturbed restricted three-body problem with triaxial and radiating primaries for binary HD 191408, Kruger 60 and HD 155876 systems. Appl. Math. Comput. 325, 358–374 (2018)

    Article  MathSciNet  Google Scholar 

  2. Abouelmagd, E.I., Alzahrani, F., Guirao, J., Hobiny, A.: Periodic orbits around the collinear libration points. J. Nonlinear Sci. Appl. (JNSA) 9(4), 1716–1727 (2016)

    Article  MathSciNet  Google Scholar 

  3. Patel, B.M., Pathak, N.M., Abouelmagd, E.I.: Stability analysis of first order resonant periodic orbit. Icarus 387, 115165 (2022)

    Article  Google Scholar 

  4. Mahato, G., Kushvah, B.S., Pal, A.K., Verma, R.K.: Dynamics of the restricted three-body problem having elongated smaller primary with disc-like structure. Adv. Space Res. 69(9), 3490–3501 (2022)

    Article  ADS  Google Scholar 

  5. Shalini, K., Idrisi, M.J., Singh, J., Ullah, M.S.: Stability analysis in the r3bp under the effect of heterogeneous spheroid. New Astron. 104, 102056 (2023)

    Article  Google Scholar 

  6. McCuskey, S.W.: Introduction to Celestial Mechanics. Reading (1963)

  7. Kishor, R., Kushvah, B.S.: Linear stability and resonances in the generalized photogravitational Chermnykh-like problem with a disc. Mon. Not. R. Astron. Soc. 436(2), 1741–1749 (2013)

    Article  ADS  Google Scholar 

  8. Abouelmagd, E.I.: Stability of the triangular points under combined effects of radiation and oblateness in the restricted three-body problem. Earth Moon Planet. 110(3), 143–155 (2013)

    Article  ADS  Google Scholar 

  9. Mia, R., Prasadu, B.R., Abouelmagd, E.I.: Analysis of stability of non-collinear equilibrium points: application to Sun–Mars and Proxima Centauri systems. Acta Astronautica

  10. Douskos, C., Perdios, E.: On the stability of equilibrium points in the relativistic restricted three-body problem. Celest. Mech. Dyn. Astron. 82(4), 317–321 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Singh, J., Ishwar, B.: Stability of triangular points in the generalised photogravitational restricted three body problem (1999)

  12. Yousuf, S., Kishor, R.: Effects of the albedo and disc on the zero velocity curves and linear stability of equilibrium points in the generalized restricted three-body problem. Mon. Not. R. Astron. Soc. 488(2), 1894–1907 (2019)

    Article  ADS  Google Scholar 

  13. Verma, R.K., Kushvah, B.S., Mahato, G., Pal, A.K.: Perturbed restricted problem of three bodies with elongated smaller primary. J. Astronaut. Sci. 70(3), 1–26 (2023)

    Article  Google Scholar 

  14. Ishwar, B., Elipe, A.: Secular solutions at triangular equilibrium point in the generalized photogravitational restricted three body problem. Astrophys. Space Sci. 277(3), 437–446 (2001)

    Article  ADS  Google Scholar 

  15. Singh, J., Leke, O.: Stability of the photogravitational restricted three-body problem with variable masses. Astrophys. Space Sci. 326, 305–314 (2010)

    Article  ADS  CAS  Google Scholar 

  16. Ershkov, S., Leshchenko, D., Abouelmagd, E.I.: About influence of differential rotation in convection zone of gaseous or fluid giant planet (Uranus) onto the parameters of orbits of satellites. Eur. Phys. J. Plus 136(4), 1–9 (2021)

    Article  Google Scholar 

  17. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  18. Abouelmagd, E.I., Alhothuali, M., Guirao, J.L., Malaikah, H.: The effect of zonal harmonic coefficients in the framework of the restricted three-body problem. Adv. Space Res. 55(6), 1660–1672 (2015)

    Article  ADS  Google Scholar 

  19. Verma, R.K., Pal, A.K., Kushvah, B.S., Mahato, G.: Effect of finite straight segment and oblateness in the restricted 2+2 body problem. Arch Appl Mech 1–17 (2023)

  20. Ceccaroni, M., Celletti, A., Pucacco, G.: Birth of periodic and artificial halo orbits in the restricted three-body problem. Int. J. Non-Linear Mech. 81, 65–74 (2016)

    Article  ADS  Google Scholar 

  21. Gao, F., Wang, Y.: Approximate analytical periodic solutions to the restricted three-body problem with perturbation, oblateness, radiation and varying mass. Universe 6(8), 110 (2020)

    Article  ADS  Google Scholar 

  22. Elshaboury, S., Abouelmagd, E.I., Kalantonis, V., Perdios, E.: The planar restricted three-body problem when both primaries are triaxial rigid bodies: equilibrium points and periodic orbits. Astrophys. Space Sci. 361(9), 1–18 (2016)

    Article  MathSciNet  Google Scholar 

  23. Jain, S., Kumar, A., Bhatnagar, K.: Periodic orbits around the collinear liberation points in the restricted three body problem when the smaller primary is a triaxial rigid body: Sun-earth case. Bull. Astron. Soc. India 34, 211 (2006)

    ADS  Google Scholar 

  24. Jain, S., Kumar, A., Bhatnagar, K.: Periodic orbits around the collinear libration points in the restricted three body problem when the smaller primary is a triaxial rigid body and bigger primary is a source of radiation pressure. Indian J. Phys. 83(2), 171–184 (2009)

    Article  ADS  CAS  Google Scholar 

  25. Hod, S.: A simplified two-body problem in general relativity. Int. J. Mod. Phys. D 22(12), 1342029 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Larrouturou, F.: Analytical methods for the study of the two-body problem, and alternative theories of gravitation. Ph.D. Thesis, Sorbone Université (2021)

  27. Benisty, D.: Testing modified gravity via Yukawa potential in two body problem: analytical solution and observational constraints. Phys. Rev. D 106(4), 043001 (2022)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Zotos, E.E., Chen, W., Abouelmagd, E.I., Han, H.: Basins of convergence of equilibrium points in the restricted three-body problem with modified gravitational potential. Chaos Solit. Fractals 134, 109704 (2020)

    Article  MathSciNet  Google Scholar 

  29. De, S., Roychowdhury, S., Banerjee, R.: Beyond-Newtonian dynamics of a planar circular restricted three-body problem with Kerr-like primaries. Mon. Not. R. Astron. Soc. 501(1), 713–729 (2021)

    Article  ADS  Google Scholar 

  30. Abouelmagd, E.I., Ansari, A.A., Shehata, M.: On Robe’s restricted problem with a modified Newtonian potential. Int. J. Geom. Methods Mod. Phys. 18(01), 2150005 (2021)

    Article  MathSciNet  Google Scholar 

  31. Battista, E., Esposito, G.: Restricted three-body problem in effective-field-theory models of gravity. Phys. Rev. D 89(8), 084030 (2014)

    Article  ADS  Google Scholar 

  32. Battista, E., Dell’Agnello, S., Esposito, G., Simo, J.: Quantum effects on Lagrangian points and displaced periodic orbits in the earth–moon system. Phys. Rev. D 91(8), 084041 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Alshaery, A., Abouelmagd, E.I.: Analysis of the spatial quantized three-body problem. Results Phys. 17, 103067 (2020)

    Article  Google Scholar 

  34. Abouelmagd, E.I., Kalantonis, V.S., Perdiou, A.E.: A quantized Hill’s dynamical system. Adv. Astron. (2021)

  35. Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum gravitational corrections to the nonrelativistic scattering potential of two masses. Phys. Rev. D 67(8), 084033 (2003)

    Article  ADS  Google Scholar 

  36. Donoghue, J.F.: Leading quantum correction to the Newtonian potential. Phys. Rev. Lett. 72(19), 2996 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Katour, D., El-Salam, A., Shaker, M., et al.: Relativistic restricted three body problem with oblatness and photo-gravitational corrections to triangular equilibrium points. Astrophys. Space Sci. 351(1), 143–149 (2014)

    Article  ADS  Google Scholar 

  38. Subbarao, P., Sharma, R.K.: A note on the stability of the triangular points of equilibrium in the restricted three-body problem. Astron. Astrophys. 43, 381–383 (1975)

    ADS  Google Scholar 

Download references

Acknowledgements

The first and second authors are thankful to the Department of Mathematics and Computing Indian Institute of Technology (Indian School of Mines)—Dhanbad, for providing facilities to prepare this manuscript. The third author is supported by Enhanced Seed Grant through Endowment Fund Ref: EF/2021-22/QE04-07 from Manipal University Jaipur.

Author information

Authors and Affiliations

Authors

Contributions

The research in this study was equally contributed by all of the authors.

Corresponding author

Correspondence to Ashok Kumar Pal.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Appendix A: Terms used in non-collinear equilibrium points \((\theta _{1,2})\)

$$\begin{aligned} \pi _1= & {} -[3(8(1+\epsilon _2)n^2 - q(8 + 16K1 + 24K2 + 9\tau _1 + 3\tau _2) + \mu (4 + 16K_3 + 36(K_4+\epsilon ) + 8q + 16K_1q + 24K_2q \\{} & {} + 9q\tau _1 + 3q\tau _2))(8(1+\epsilon _2)n^2 - q(8 + 16K_1 + 24K_2 + 3\tau _1 + 9\tau _2) + \mu (-8 - 16K_3 - 24(K_4+\epsilon ) + 8q + 16K_1q \\{} & {} + 24K_2q + 3q\tau _1 + 9q\tau _2)) - (8(1+\epsilon _2)n^2*(-1 + 2\mu ) + q(8 + 16K_1 + 24K_2 - 21\tau _1 + 33\tau _2) - \mu (8 + 16K_3 \\{} & {} + 24(K_4+\epsilon ) + 8q + 16K_1q + 24K_2q - 21q\tau _1 + 33q\tau _2))(8(1+\epsilon _2)n^2 - q(8 + 16K_1 + 24K_2 - 87\tau _1 + 99\tau _2)\\{} & {} + \mu (28 + 80K_3 + 156(K_4+\epsilon ) + 8q + 16K_1q + 24K_2q - 87q\tau _1 + 99q\tau _2))],\\ \psi _1= & {} [(8(1+\epsilon _2)n^2 - q(8 + 16K_1 + 24K_2 - 87\tau _1 + 99\tau _2) + \mu (28 + 80K_3 + 156(K_4+\epsilon ) + 8q \\{} & {} + 16K_1q + 24K_2q - 87q\tau _1 +99q\tau _2))(16(1+\epsilon _2)n^2 + q(8 + 32K_1 + 72K_2 - 93\tau _1 + 129\tau _2)\\{} & {} - \mu (16 + 32K_3 + 48(K_4+\epsilon ) + 8q + 32K_1q + 72K_2q - 93q\tau _1 + 129q\tau _2)) + (8(1+\epsilon _2)n^2 \\{} & {} - q(8 + 16K_1 + 24K_2 + 9\tau _1 + 3\tau _2) + \mu (4 + 16K_3 + 36K_4 + 8q + 16K_1q + 24K_2q \\{} & {} + 9q\tau _1 +3q\tau _2))(16(1+\epsilon _2)n^2 + q(56 + 160K_1 + 312K_2 - 51\tau _1 + 207\tau _2) - \mu (16 + 32K_3 \\{} & {} + 48K_4 + 56q + 160K_1q + 312K_2q - 51q\tau _1 + 207q\tau _2))],\\ \pi _2= & {} (1+\epsilon _2)(8 - 16\mu )n^2 - q(8 + 16K_1 + 24K_2 - 21\tau _1 + 33\tau _2) + \mu (8 + 16K_3 + 24(K_4+\epsilon ) + 8q + 16K_1q \\{} & {} + 24K_2q - 21q\tau _1 + 33q\tau _2),\\ \pi _3= & {} 2(8(1+\epsilon _2)n^2 - q(8 + 16K_1 + 24K_2 + 9\tau _1 + 3\tau _2) + \mu (4 + 16K_3 + 36(K_4+\epsilon ) + 8q + 16K_1q + 24K_2q \\{} & {} + 9q\tau _1 + 3q\tau _2)),\\ \psi _2= & {} [(-8(1+\epsilon _2)n^2 + q(8 + 16K_1 + 24K_2 + 9\tau _1 + 3\tau _2) - \mu (4 + 16K_3 + 36(K_4+\epsilon ) + 8q + 16K_1q + 24K_2q \\{} & {} + 9q\tau _1 + 3q\tau _2))((8(1+\epsilon _2)n^2 - q(8 + 16K_1 + 24K_2 - 87\tau _1 + 99\tau _2) +\mu (28 + 80K_3 + 156(K_4+\epsilon ) + 8q \\{} & {} + 16K_1q + 24K_2q - 87q\tau _1 + 99q\tau _2))(16(1+\epsilon _2)n^2 + q(8 + 32K_1 + 72K_2 - 93\tau _1 + 129\tau _2) - \mu (16 + 32K_3 \\{} & {} + 48(K_4+\epsilon ) + 8q + 32K_1q + 72K_2q - 93q\tau _1 + 129q\tau _2)) + (8(1+\epsilon _2)n^2 - q(8 + 16K_1 + 24K_2 + 9\tau _1 + 3\tau _2) \\{} & {} + \mu (4 + 16K_3 + 36(K_4+\epsilon ) + 8q + 16K_1q + 24K_2q + 9q\tau _1 + 3q\tau _2))(16(1+\epsilon _2)n^2 + q(56 + 160K_1 + 312K_2 \\{} & {} - 51\tau _1 + 207\tau _2) -\mu (16 + 32K_3 + 48(K_4+\epsilon ) + 56q + 160K_1q + 312K_2q - 51q\tau _1 + 207q\tau _2)))]. \end{aligned}$$

Appendix B: Terms used for the partial derivatives of \(\Omega \)

$$\begin{aligned} \frac{\partial A}{\partial x}= & {} -(x+\mu )^2\times \left[ \frac{3}{r_1^5}+\frac{8K_1}{r_1^6}+\frac{15K_2}{r_1^7}+\frac{15(2\tau _1-\tau _2)}{2r_1^7}+\frac{105y^2(\tau _2-\tau _1)}{2r_1^9} \right] \\{} & {} +\left[ \frac{1}{r_1^3}+\frac{2K_1}{r_1^4}+\frac{3K_2}{r_1^5}+ \frac{3(2\tau _1-\tau _2)}{2r_1^5}+\frac{15y^2(\tau _2-\tau _1)}{2r_1^7} \right] ,\\ \frac{\partial B}{\partial x}= & {} -(x+\mu -1)^2\left[ \frac{3}{r_2^5}+\frac{8K_3}{r_2^6}+\frac{15(K_4+\epsilon )}{r_2^7} \right] +\frac{1}{r_2^3}+\frac{2K_3}{r_2^4}+\frac{3(K_4+\epsilon )}{r_2^5},\\ \frac{\partial C}{\partial y}= & {} -y^2\left[ \frac{3}{r_1^5}+ \frac{8K_1}{r_1^6}+\frac{3K_2}{r_1^7}+\frac{5(12\tau _1-9\tau _2)}{2r_1^7} \right] +\left[ \frac{1}{r_1^3}+\frac{2K_1}{r_1^4}+\frac{3K_2}{r_1^5}+\frac{12\tau _1-9\tau _2}{2r_1^5} \right] ,\\ \frac{\partial D}{\partial y}= & {} -y^2\left[ \frac{3}{r_2^5}+ \frac{8K_3}{r_2^6}+\frac{15(K_4+\epsilon )}{r_2^7} \right] +\left[ \frac{1}{r_2^3}+\frac{2K_3}{r_2^4}+\frac{3(K_4+\epsilon )}{r_2^5} \right] ,\\ \frac{\partial E}{\partial y}= & {} \frac{3y^2}{r_1^7}-\frac{7y^4}{r_1^9},\\ A_1= & {} 3(1-\mu )q(x+\mu )y,\quad B_1 = 8K_1(1-\mu )q(x+\mu )y, \\ C_1= & {} 15(1-\mu )q(x+\mu )\left[ K_2y+(2\tau _1-\tau _2)y-(\tau _1+\tau _2)y \right] ,\\ D_1= & {} 3\mu (\mu -1+x)y,\quad E_1 = 8K_3\mu (\mu -1+x)y,\\ F_1= & {} 15K_4\mu (\mu -1+x)y. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, R.K., Kushvah, B.S. & Pal, A.K. Dynamics of the perturbed restricted three-body problem with quantum correction and modified gravitational potential. Arch Appl Mech 94, 651–665 (2024). https://doi.org/10.1007/s00419-024-02543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-024-02543-3

Keywords

Navigation