Skip to main content
Log in

Discrete duality finite volume scheme for a generalized Joule heating problem

  • Published:
Calcolo Aims and scope Submit manuscript

Abstract

In this paper we conceive and analyze a discrete duality finite volume (DDFV) scheme for the unsteady generalized thermistor problem, including a p-Laplacian for the diffusion and a Joule heating source. As in the continuous setting, the main difficulty in the design of the discrete model comes from the Joule heating term. To cope with this issue, the Joule heating term is replaced with an equivalent key formulation on which a fully implicit scheme is constructed. Introducing a tricky cut-off function in the proposed discretization, we are able to recover the energy estimates on the discrete temperature. Another feature of this approach is that we dispense with the discrete maximum principle on the approximate electric potential, which in essence poses restrictive constraints on the mesh shape. Then, the existence of discrete solution to the coupled scheme is established. Compactness estimates are also shown. Under general assumptions on the data and meshes, the convergence of the numerical scheme is addressed. Numerical results are finally presented to show the efficiency and accuracy of the proposed methodology as well as the behavior of the implemented nonlinear solver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allegretto, W., Xie, H.: Existence of solutions for the time-dependent thermistor equations. IMA J. Appl. Math. 48(3), 271–281 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Andreianov, B., Bendahmane, M., Karlsen, K.H.: Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic–parabolic equations. J. Hyperbolic Differ. Equ. 7(01), 1–67 (2010)

    Article  MathSciNet  Google Scholar 

  3. Andreianov, B., Boyer, F., Hubert, F.: Discrete duality finite volume schemes for Leray–Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Equ. 23(1), 145–195 (2007)

    Article  MathSciNet  Google Scholar 

  4. Boyer, F., Hubert, F.: Finite volume method for 2D linear and nonlinear elliptic problems with discontinuities. SIAM J. Numer. Anal. 46(6), 3032–3070 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)

    Article  MathSciNet  Google Scholar 

  6. Chainais-Hillairet, C., Krell, S., Mouton, A.: Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differ. Equ. 31(3), 723–760 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chauvin, C., Saramito, P., Trophime, C.:. Convergence properties and numerical simulation by an adaptive FEM of the thermistor problem (2007). https://hal.science/hal-00449960

  8. Cimatti, G.: A bound for the temperature in the thermistor problem. IMA J. Appl. Math. 40(1), 15–22 (1988)

    Article  MathSciNet  Google Scholar 

  9. Coudière, Y., Manzini, G.: The discrete duality finite volume method for convection-diffusion problems. SIAM J. Numer. Anal. 47(6), 4163–4192 (2010)

    Article  MathSciNet  Google Scholar 

  10. Coudière, Y., Pierre, C., Rousseau, O., Turpault, R.: A 2D/3D discrete duality finite volume scheme. Application to ECG simulation. Int. J. Finite Vol. 6, 1–24 (2009)

    MathSciNet  Google Scholar 

  11. Coudière, Y., Vila, J.-P., Villedieu, P.: Convergence rate of a finite volume scheme for a two dimensional convection-diffusion problem. ESAIM Math. Model. Numer. Anal. 33(3), 493–516 (1999)

    Article  MathSciNet  Google Scholar 

  12. Delcourte, S.: Développement des méthodes de volumes finis pour la mécanique des fluides. PhD thesis, Université Paul Sabatier, Toulouse, France (2007)

  13. Domelevo, K., Omnes, P.: A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM Math. Model. Numer. Anal. 39(6), 1203–1249 (2005)

    Article  MathSciNet  Google Scholar 

  14. Droniou, J.: Finite volume schemes for fully non-linear elliptic equations in divergence form. ESAIM Math. Model. Numer. Anal. 40(6), 1069–1100 (2006)

    Article  MathSciNet  Google Scholar 

  15. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)

    Article  MathSciNet  Google Scholar 

  16. Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105(1), 35–71 (2006)

    Article  MathSciNet  Google Scholar 

  17. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method, volume 82 of Mathematics & Applications. Springer, Berlin (2018)

    Book  Google Scholar 

  18. Droniou, J., Eymard, R., Gallouet, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23(13), 2395–2432 (2013)

    Article  MathSciNet  Google Scholar 

  19. Evans, L.C.: Partial Differential Equations, vol. 19. American Mathematical Society, Providence (2010)

    Google Scholar 

  20. Ewing, R.E., Lin, T., Lin, Y.: On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39(6), 1865–1888 (2002)

    Article  MathSciNet  Google Scholar 

  21. Eymard, R., Gallouët, T., Herbin, R.: A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C.R. Math. 344(6), 403–406 (2007)

    Article  MathSciNet  Google Scholar 

  22. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    Article  MathSciNet  Google Scholar 

  23. Gallego, F.O., Montesinos, M.T.G.: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl. Anal. 6(1), 23 (2007)

    Article  MathSciNet  Google Scholar 

  24. Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic PDEs-application to a turbulence model. Commun. Pure Appl. Anal. 11(6), 2371–2391 (2012)

    Article  MathSciNet  Google Scholar 

  25. Ghilani, M., Quenjel, E.H., Rhoudaf, M.: Numerical analysis of a stable finite volume scheme for a generalized thermistor model. Comput. Methods Appl. Math. 21(1), 69–87 (2021)

    Article  MathSciNet  Google Scholar 

  26. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 659–692. Wiley, Hoboken (2008)

    Google Scholar 

  27. Hermeline, F.: A finite volume method for the approximation of diffusion operators on distorted meshes. J. Comput. Phys. 160(2), 481–499 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hermeline, F.: Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Eng. 192(16–18), 1939–1959 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Krell, S.: Stabilized DDFV schemes for Stokes problem with variable viscosity on general 2D meshes. Numer. Methods Partial Differ. Equ. 27(6), 1666–1706 (2011)

    Article  MathSciNet  Google Scholar 

  30. Krell, S.: Finite volume method for general multifluid flows governed by the interface Stokes problem. Math. Models Methods Appl. Sci. 22(05), 1150025 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kwok, K.N.: Thermistor, Chapter 70, pp. 528–535. Wiley, Hoboken (2010)

    Google Scholar 

  32. Montesinos, M.T.G., Gallego, F.O.: The evolution thermistor problem with degenerate thermal conductivity. Commun. Pure Appl. Anal. 1(3), 313 (2002)

    Article  MathSciNet  Google Scholar 

  33. Montesinos, M.T.G., Gallego, F.O.: On the existence of solutions for a strongly degenerate system. C.R. Math. 343(05), 119–123 (2006)

    Article  MathSciNet  Google Scholar 

  34. Moussa, H., Gallego, F.O., Rhoudaf, M.: Capacity solution to a coupled system of parabolic-elliptic equations in Orlicz–Sobolev spaces. Nonlinear Differ. Equ. Appl. 25(2), 14 (2018)

    Article  MathSciNet  Google Scholar 

  35. Quenjel, E.H.: Enhanced positive vertex-centered finite volume scheme for anisotropic convection-diffusion equations. ESAIM Math. Model. Numer. Anal. 54(2), 591–618 (2020)

    Article  MathSciNet  Google Scholar 

  36. Quenjel, E.H.: Nonlinear finite volume discretization for transient diffusion problems on general meshes. Appl. Numer. Math. 161, 148–168 (2021)

    Article  MathSciNet  Google Scholar 

  37. Quenjel, E.H., Saad, M., Ghilani, M., Bessemoulin-Chatard, M.: Convergence of a positive nonlinear DDFV scheme for degenerate parabolic equations. Calcolo 57, 19 (2020)

    Article  MathSciNet  Google Scholar 

  38. Shi, P., Shillor, M., Xu, X.: Existence of a solution to the Stefan problem with Joule’s heating. J. Differ. Equ. 105(2), 239–263 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  39. Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun. Partial Differ. Equ. 18(1–2), 199–213 (1993)

    Article  MathSciNet  Google Scholar 

  40. Xu, X.: Local and global existence of continuous temperature in the electrical heating of conductors. Houst. J. Math. 22(2), 435–455 (1996)

    MathSciNet  Google Scholar 

  41. Zhou, S., Westbrook, D.: Numerical solutions of the thermistor equations. J. Comput. Appl. Math. 79(1), 101–118 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to El-Houssaine Quenjel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahari, M., Quenjel, EH. & Rhoudaf, M. Discrete duality finite volume scheme for a generalized Joule heating problem. Calcolo 61, 14 (2024). https://doi.org/10.1007/s10092-024-00566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10092-024-00566-4

Keywords

Mathematics Subject Classification

Navigation