Skip to main content
Log in

Microwave Parameters of Components of Shielding Composites. Part 2: Mechanisms of Microwave Absorption

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper analyzes the absorption efficiency of electromagnetic (EM) radiation by components of microwave shielding composites. EM wave in the absorbing material loses its energy during the interaction with molecular and electron structure of material. The mechanisms of wave absorption in dielectrics, semiconductors, magnetics and metals are considered with due regard for dimensional effects. It has been established that the absorption capacity of semiconductor and magnetic fillers of composites decreases to the extent of frequency rise. The recommendations for the selection of absorbing components of shielding composites intended for different frequency ranges are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Broadband Dielectric Spectroscopy (Springer Berlin Heidelberg, Berlin, Heidelberg, 2003). DOI: https://doi.org/10.1007/978-3-642-56120-7.

    Book  Google Scholar 

  2. M. T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2008). DOI: https://doi.org/10.1016/B978-0-08-045330-9.X0001-5.

    Book  Google Scholar 

  3. J. Kruželák, A. Kvasničáková, K. Hložeková, I. Hudec, "Progress in polymers and polymer composites used as efficient materials for EMI shielding," Nanoscale Adv., v.3, n.1, p.123 (2021). DOI: https://doi.org/10.1039/D0NA00760A.

    Article  ADS  PubMed  Google Scholar 

  4. Y. Poplavko, Y. Didenko, D. Tatarchuk, "Microwave parameters of components of shielding composites. Part 1: Mechanisms of microwave reflection," Radioelectron. Commun. Syst., v.65, n.11, p.563 (2022). DOI: https://doi.org/10.3103/S0735272722120020.

    Article  Google Scholar 

  5. A. Choudhary, S. Pal, G. Sarkhel, "Broadband millimeter-wave absorbers: a review," Int. J. Microw. Wirel. Technol., v.15, n.2, p.347 (2023). DOI: https://doi.org/10.1017/S1759078722000162.

    Article  Google Scholar 

  6. A. Prokopchuk, I. Zozulia, Y. Didenko, D. Tatarchuk, H. Heuer, Y. Poplavko, "Dielectric permittivity model for polymer–filler composite materials by the example of Ni- and graphite-filled composites for high-frequency absorbing coatings," Coatings, v.11, n.2, p.172 (2021). DOI: https://doi.org/10.3390/coatings11020172.

    Article  CAS  Google Scholar 

  7. X. Zeng, X. Cheng, R. Yu, G. D. Stucky, "Electromagnetic microwave absorption theory and recent achievements in microwave absorbers," Carbon, v.168, p.606 (2020). DOI: https://doi.org/10.1016/j.carbon.2020.07.028.

    Article  CAS  Google Scholar 

  8. B. Vagananthan, Y. S. Lee, K. Y. You, H. S. Gan, F. H. Wee, "Investigate the effect of dielectric properties on microwave absorption of pyramidal microwave absorber," J. Microwaves, Optoelectron. Electromagn. Appl., v.21, n.2, p.328 (2022). DOI: https://doi.org/10.1590/2179-10742022v21i2257631.

    Article  Google Scholar 

  9. M. F. Elmahaishi, R. S. Azis, I. Ismail, F. D. Muhammad, "A review on electromagnetic microwave absorption properties: their materials and performance," J. Mater. Res. Technol., v.20, p.2188 (2022). DOI: https://doi.org/10.1016/j.jmrt.2022.07.140.

    Article  CAS  Google Scholar 

  10. D. D. Tatarchuk, Y. M. Poplavko, V. Kazmirenko, O. V. Borisov, Y. V. Didenko, "Composites based on dielectric materials for microwave engineering," Radioelectron. Commun. Syst., v.59, n.2, p.74 (2016). DOI: https://doi.org/10.3103/S0735272716020047.

    Article  Google Scholar 

  11. Y. Xu, Z. Lin, Y. Yang, H. Duan, G. Zhao, Y. Liu, Y. Hu, R. Sun, C.-P. Wong, "Integration of efficient microwave absorption and shielding in a multistage composite foam with progressive conductivity modular design," Mater. Horizons, v.9, n.2, p.708 (2022). DOI: https://doi.org/10.1039/D1MH01346G.

    Article  CAS  Google Scholar 

  12. M. Perez-Escribano, E. Marquez-Segura, "Parameters characterization of dielectric materials samples in microwave and millimeter-wave bands," IEEE Trans. Microw. Theory Tech., v.69, n.3, p.1723 (2021). DOI: https://doi.org/10.1109/TMTT.2020.3045211.

    Article  ADS  Google Scholar 

  13. Y. Poplavko, Electronic Materials: Principles and Applied Science (Elsevier, Amsterdam, 2018). URI: https://www.elsevier.com/books/electronic-materials/poplavko/978-0-12-815255-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Didenko.

Ethics declarations

ADDITIONAL INFORMATION

Yu. M. Poplavko, Yu. V. Didenko, and D. D. Tatarchuk

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Ukrainian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347023010041 with DOI: https://doi.org/10.20535/S0021347023010041

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 12, pp. 752-765, December, 2022 https://doi.org/10.20535/S0021347023010041 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poplavko, Y.M., Didenko, Y.V. & Tatarchuk, D.D. Microwave Parameters of Components of Shielding Composites. Part 2: Mechanisms of Microwave Absorption. Radioelectron.Commun.Syst. 65, 641–653 (2022). https://doi.org/10.3103/S0735272723010041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272723010041

Navigation