Skip to main content
Log in

SpiderNet: Fully Connected Residual Network for Fraud Detection

  • Published:
Doklady Mathematics Aims and scope Submit manuscript

Abstract

A convolutional neural network architecture SpiderNet designed for fraud detection has been proposed. The principles of pooling and convolutional layers in neural networks are very similar to the methods used by antifraud analysts in their research. In addition, the skip-connections used in neural networks make it possible to use features of various power in antifraud models. Our experiments have shown that SpiderNet provides better quality compared to Random Forest, CNN, DenseNet, and F-DenseNet (adapted for antifraud modeling problems) neural networks. Also, new approaches for anti-fraud rules (B-tests and W-tests) have been proposed. The SpiderNet code is available at https://github.com/aasmirnova24/SpiderNet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. https://www.theguardian.com/world/2020/apr/20/kingfisher-airlines-tycoon-vijay-mallya-loses-appeal-extradition-india.

  2. https://www.reuters.com/article/us-china-corruption-tycoon-idUSKBN1900DL/.

  3. https://cbr.ru/analytics/ib/operations_survey_2022/.

  4. https://cbr.ru/analytics/ib/fincert/#a_119487.

  5. https://dc.cloud.alipay.com/index#/topic/data?id=4.

REFERENCES

  1. R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,” Stat. Sci. 17 (3), 235–255 (1999). https://doi.org/10.1214/ss/1042727940

    Article  MathSciNet  Google Scholar 

  2. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks” (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

  3. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Microsoft Research (2015). https://arxiv.org/pdf/1512.03385v1.pdf

  4. A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio” (2016). arXiv:1609.03499

  5. R. Paulus, C. Xiong, and R. Socher, “A deep reinforced model for abstractive summarization” (2017). arXiv:1705.04304

  6. F. Benford, “The law of anomalous numbers,” Proc. Am. Philos. Soc. 78 (4), 551–572 (1938). https://doi.org/10.2307/984802

    Article  Google Scholar 

  7. M. Raghu and E. Schmidt, “A survey of deep learning for scientific discovery” (2020). arxiv.org/abs/2003.11755.

  8. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962). https://doi.org/10.1113/jphysiol.1962.sp006837

    Article  Google Scholar 

  9. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural Comput. 1 (4), 541–551 (1989). https://doi.org/10.1162/neco.1989.1.4.541

    Article  Google Scholar 

  10. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions” (2014). https://arxiv.org/pdf/1409.4842v1.pdf

  11. M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for convolutional neural networks” (2019). arxiv.org/abs/1905.11946

  12. Kanika and J. Singla, “A survey of deep learning based online transactions fraud detection systems” (2020). https://doi.org/10.1109/ICIEM48762.2020.9160200

  13. B. J. Wiese and C. Omlin, “Credit card transactions, fraud detection, and machine learning: Modelling time with LSTM recurrent neural networks,” in Innovations in Neural Information Paradigms and Applications (Springer, Berlin, 2007), pp. 231–268. https://doi.org/10.1007/978-3-642-04003-0

    Book  Google Scholar 

  14. K. Fu, D. Cheng, Y. Tu, and L. Zhang, “Credit card fraud detection using convolutional neural networks,” in Neural Information Processing (Springer, Cham, 2016), pp. 483–490. https://doi.org/10.1007/978-3-319-46675-0_53

    Book  Google Scholar 

  15. Y. Heryadi and H. L. H. Spits Warnars, “Learning temporal representation of transaction amount for fraudulent transaction recognition using CNN, stacked LSTM, and CNN-LSTM,” IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom) (2017). https://doi.org/10.1109/CYBERNETICSCOM.2017.8311689

  16. B. Li, K. Xu, X. Cui, Y. Wang, X. Ai, and Y. Wang, “Multi-scale DenseNet-based electricity theft detection” (2018). https://arxiv.org/ftp/arxiv/papers/1805/1805.09591.pdf

  17. Z. Chen and G. Liu, “DenseNet+Inception and its application for electronic transaction fraud detection” (2019). https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00357

  18. D. Cheng, S. Xiang, C. Shang, Y. Zhang, F. Yang, and L. Zhang, “Spatio-temporal attention-based neural network for credit card fraud detection” (2020). https://doi.org/10.1609/aaai.v34i01.5371

  19. Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph neural network-based fraud detectors against camouflaged fraudsters” (2020). https://doi.org/10.1145/3340531.3411903

  20. S. Afanasiev and A. Smirnova, “Predictive fraud analytics: B-tests” (2018). https://doi.org/10.21314/JOP.2018.213

  21. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (Honolulu, HI, USA, 2017), pp. 2261–2269. https://doi.org/10.1109/CVPR.2017.243

  22. T. Saito and M. Rehmsmeier, “The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets,” PLoS ONE 10 (3), e0118432 (2015). https://doi.org/10.1371/journal.pone.0118432

Download references

Funding

This work was supported by the ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Afanasiev, A. A. Smirnova or D. M. Kotereva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afanasiev, S.V., Smirnova, A.A. & Kotereva, D.M. SpiderNet: Fully Connected Residual Network for Fraud Detection. Dokl. Math. 108 (Suppl 2), S360–S367 (2023). https://doi.org/10.1134/S1064562423701028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064562423701028

Keywords:

Navigation