Skip to main content

Advertisement

Log in

A new open-source framework for multiscale modeling of fibrous materials on heterogeneous supercomputers

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This article presents MuMFiM, an open-source application for multiscale modeling of fibrous materials on massively parallel computers. MuMFiM uses two scales to represent fibrous materials such as biological network materials (extracellular matrix, connective tissue, etc.). It is designed to make use of multiple levels of parallelism, including distributed parallelism of the macro- and micro-scales as well as GPU-accelerated data-parallelism of the microscale. Scaling results of the GPU accelerated microscale show that solving microscale problems concurrently on the GPU can lead to a 1000x speedup over the solution of a single RVE on the GPU. In addition, we show nearly optimal strong and weak scaling results of MuMFiM on up to 128 nodes of AiMOS (Rensselaer Polytechnic Institute) which is composed of IBM AC922 nodes with 6 Volta V100 GPU and 2 20 core Power 9 CPUs each. We also show how MuMFiM can be used to solve problems of interest to the broader engineering community, in particular providing an example of the facet capsule ligament (FCL) of the human spine undergoing uniaxial extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The source code that supports the findings of this study are openly available in a git repository that can be found at https://github.com/scorec/mumfim. Authors can provide detailed support for building and running MuMFiM upon request.

Notes

  1. MuMFiM can be found at https://github.com/SCOREC/mumfim.

References

  1. Kanouté P, Boso DP, Chaboche JL, Schrefler BA (2009) Multiscale methods for composites: a review. Arch Comput Methods Eng 16(1):31–75. https://doi.org/10.1007/s11831-008-9028-8

    Article  Google Scholar 

  2. Feyel F (1999) Multiscale FE2 elastoviscoplastic analysis of composite structures. Comput Mater Sci 16(1):344–354. https://doi.org/10.1016/S0927-0256(99)00077-4

    Article  CAS  Google Scholar 

  3. Feyel F (2001) Multiscale non linear FE2 analysis of composite structures: fiber size effects. Le Journal de Physique IV 11(PR5):195–202. https://doi.org/10.1051/jp4:2001524

    Article  Google Scholar 

  4. Nezamabadi S, Yvonnet J, Zahrouni H, Potier-Ferry M (2009) A multilevel computational strategy for handling microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198(27–29):2099–2110. https://doi.org/10.1016/j.cma.2009.02.026

    Article  ADS  Google Scholar 

  5. Tikarrouchine E, Chatzigeorgiou G, Praud F, Piotrowski B, Chemisky Y, Meraghni F (2018) Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures. Compos Struct 193:165–179. https://doi.org/10.1016/j.compstruct.2018.03.072

    Article  Google Scholar 

  6. Eidel B, Fischer A (2018) The heterogeneous multiscale finite element method for the homogenization of linear elastic solids and a comparison with the FE2 method. Comput Methods Appl Mech Eng 329:332–368. https://doi.org/10.1016/j.cma.2017.10.001

    Article  ADS  Google Scholar 

  7. Miehe C (2003) Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192(5–6):559–591. https://doi.org/10.1016/S0045-7825(02)00564-9

    Article  ADS  MathSciNet  Google Scholar 

  8. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1–2):181–192. https://doi.org/10.1016/S0045-7825(97)00139-4

    Article  ADS  Google Scholar 

  9. Feyel F, Chaboche J-L (2001) Multi-scale non-linear FE2 analysis of composite structures: damage and fiber size effects. Revue Européenne des Éléments Finis 10(2–4):449–472. https://doi.org/10.1080/12506559.2001.11869262

    Article  Google Scholar 

  10. Feyel F (2003) A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua. Comput Methods Appl Mech Eng 192(28–30):3233–3244. https://doi.org/10.1016/S0045-7825(03)00348-7

    Article  ADS  Google Scholar 

  11. Castañeda PP (1991) The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45–71. https://doi.org/10.1016/0022-5096(91)90030-R

    Article  ADS  MathSciNet  Google Scholar 

  12. Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de l’Académie des sciences. Série II. Mécanique, physique, chimie, astronomie

  13. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1-2):69–94. arxiv:2012.08962 [physics]. https://doi.org/10.1016/S0045-7825(97)00218-1

  14. Michel JC, Moulinec H, Suquet P (1999) Effective properties of composite materials with periodic microstructure: a computational approach. Comput Methods Appl Mech Eng 172(1–4):109–143. https://doi.org/10.1016/S0045-7825(98)00227-8

    Article  ADS  MathSciNet  Google Scholar 

  15. Geers MGD, Kouznetsova VG, Matouš K, Yvonnet J (2017) Homogenization methods and multiscale modeling: nonlinear problems. In: Encyclopedia of Computational Mechanics Second Edition, pp 1–34. John Wiley & Sons, Ltd, ???. https://doi.org/10.1002/9781119176817.ecm2107

  16. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48. https://doi.org/10.1007/s004660000212

    Article  Google Scholar 

  17. Coenen EWC, Kouznetsova VG, Bosco E, Geers MGD (2012) A multi-scale approach to bridge microscale damage and macroscale failure: a nested computational homogenization-localization framework. Int J Fract 178(1–2):157–178. https://doi.org/10.1007/s10704-012-9765-4

    Article  Google Scholar 

  18. Ponte Castañeda P (2023) Variational linear comparison homogenization estimates for the flow of yield stress fluids through porous media. J Nonnewton Fluid Mech 321:105104. https://doi.org/10.1016/j.jnnfm.2023.105104

    Article  MathSciNet  CAS  Google Scholar 

  19. Kouznetsova VG, Geers MGD, Brekelmans WAM (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193(48–51):5525–5550. https://doi.org/10.1016/j.cma.2003.12.073

    Article  ADS  Google Scholar 

  20. Temizer I, Zohdi TI (2007) A numerical method for homogenization in non-linear elasticity. Comput Mech 40(2):281–298. https://doi.org/10.1007/s00466-006-0097-y

    Article  Google Scholar 

  21. Zhi J, Poh LH, Tay T-E, Tan VBC (2022) Direct fe 2 modeling of heterogeneous materials with a micromorphic computational homogenization framework. Comput Methods Appl Mech Eng 393:114837. https://doi.org/10.1016/j.cma.2022.114837

    Article  ADS  MathSciNet  Google Scholar 

  22. Temizer İ, Wriggers P (2008) On the computation of the macroscopic tangent for multiscale volumetric homogenization problems. Comput Methods Appl Mech Eng 198(3–4):495–510. https://doi.org/10.1016/j.cma.2008.08.018

    Article  ADS  MathSciNet  Google Scholar 

  23. Ibanez DA, Seol ES, Smith CW, Shephard MS (2016) Pumi: Parallel unstructured mesh infrastructure. ACM Trans Math Software 42(3):1–28. https://doi.org/10.1145/2814935

    Article  MathSciNet  Google Scholar 

  24. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient management of parallelism in object oriented numerical software libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Modern software tools in scientific computing. Birkhäuser Press, Basel, Switzerland, pp 163–202

    Chapter  Google Scholar 

  25. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H (2018) Petsc users manual. Argonne National Laboratory, Manual

    Book  Google Scholar 

  26. Underwood P (1986) Dynamic relaxation. In: Belytschko T, Hughes TJR (eds) Computational method for transient analysis, vol 1. Computational methods in mechanics. North Holland, Amsterdam, pp 245–263

    Google Scholar 

  27. Mahutga RR, Barocas VH, Alford PW (2023) The non-affine fiber network solver: a multiscale fiber network material model for finite-element analysis. J Mech Behav Biomed Mater 144:105967. https://doi.org/10.1016/j.jmbbm.2023.105967

    Article  PubMed  Google Scholar 

  28. Glüge R (2013) Generalized boundary conditions on representative volume elements and their use in determining the effective material properties. Comput Mater Sci 79:408–416. https://doi.org/10.1016/j.commatsci.2013.06.038

    Article  Google Scholar 

  29. Hill R (1963) Elastic properties of reinforced solids: some theoretical principles. J Mech Phys Solids 11(5):357–372. https://doi.org/10.1016/0022-5096(63)90036-X

    Article  ADS  MathSciNet  Google Scholar 

  30. Liu C, Reina C (2016) Discrete averaging relations for micro to macro transition. J Appl Mech 83(8):081006. https://doi.org/10.1115/1.4033552

    Article  Google Scholar 

  31. Walters DJ, Luscher DJ, Yeager JD (2021) Considering computational speed vs. accuracy: choosing appropriate mesoscale rve boundary conditions. Comput Methods Appl Mech Eng 374:113572

    Article  ADS  MathSciNet  Google Scholar 

  32. Luscher D, McDowell DL, Bronkhorst C (2012) Essential features of fine scale boundary conditions for second gradient multiscale homogenization of statistical volume elements. Int J Multiscale Comput Eng 10(5)

  33. Merson J, Picu RC (2020) Size effects in random fiber networks controlled by the use of generalized boundary conditions. Int J Solids Struct 206:314–321. https://doi.org/10.1016/j.ijsolstr.2020.09.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shahsavari AS, Picu RC (2013) Size effect on mechanical behavior of random fiber networks. Int J Solids Struct 50(20):3332–3338. https://doi.org/10.1016/j.ijsolstr.2013.06.004

    Article  Google Scholar 

  35. Licup AJ, Sharma A, MacKintosh FC (2016) Elastic regimes of subisostatic athermal fiber networks. Phys Rev E 93(1):012407. https://doi.org/10.1103/PhysRevE.93.012407

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Islam MR, Tudryn G, Bucinell R, Schadler L, Picu RC (2018) Stochastic continuum model for mycelium-based bio-foam. Mater Des 160:549–556. https://doi.org/10.1016/j.matdes.2018.09.046

    Article  Google Scholar 

  37. Deogekar S, Picu RC (2018) On the strength of random fiber networks. J Mech Phys Solids 116:1–16. https://doi.org/10.1016/j.jmps.2018.03.026

    Article  ADS  MathSciNet  Google Scholar 

  38. Courant R, Friedrichs K, Lewy H (1928) über die partiellen differenzengleichungen der mathematischen physik. Math Ann 100(1):32–74. https://doi.org/10.1007/BF01448839

    Article  MathSciNet  Google Scholar 

  39. Belytschko T, Liu WK, Moran B, Elkhodary KI (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, Chichester

    Google Scholar 

  40. Papadrakakis M (1981) A method for the automatic evaluation of the dynamic relaxation parameters. Comput Methods Appl Mech Eng 25(1):35–48. https://doi.org/10.1016/0045-7825(81)90066-9

    Article  ADS  MathSciNet  Google Scholar 

  41. Zhang LC, Kadkhodayan M, Mai Y-W (1994) Development of the madr method. Comput Struct 52(1):1–8. https://doi.org/10.1016/0045-7949(94)90249-6

    Article  Google Scholar 

  42. Rezaiee-Pajand M, Alamatian J (2010) The dynamic relaxation method using new formulation for fictitious mass and damping. Struct Eng Mech 34(1):109–133. https://doi.org/10.12989/SEM.2010.34.1.109

    Article  Google Scholar 

  43. Lee KS, Han SE, Park T (2011) A simple explicit arc-length method using the dynamic relaxation method with kinetic damping. Comput Struct 89(1–2):216–233. https://doi.org/10.1016/j.compstruc.2010.09.006

    Article  Google Scholar 

  44. Gaston D, Newman C, Hansen G, Lebrun-Grandie D (2009) Moose: A parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239(10):1768–1778

    Article  CAS  Google Scholar 

  45. Davison de St Germain J, McCorquodale J, Parker SG, Johnson CR (2000) Uintah: A massively parallel problem solving environment. In: Proceedings the Ninth International Symposium on High-Performance Distributed Computing, pp. 33–41. IEEE, ???

  46. Joppich W, Kürschner M (2006) Mpcci—a tool for the simulation of coupled applications. Concurrency Comput 18(2):183–192. https://doi.org/10.1002/cpe.913

    Article  Google Scholar 

  47. Gravemeier V, Lenz S, Wall WA (2008) Towards a taxonomy for multiscale methods in computational mechanics: building blocks of existing methods. Comput Mech 41(2):279–291

    Article  MathSciNet  Google Scholar 

  48. Tobin WR (2018) The adaptive multiscale simulation infrastructure. PhD thesis, Rensselaer Polytechn. Inst., Troy, NY USA. Dept. Comput. Sci

  49. Merson J, Shephard MS (2021) Model-traits: model attribute definitions for scientific simulations in c++. J Open Source Softw 6(64):3389. https://doi.org/10.21105/joss.03389

    Article  ADS  Google Scholar 

  50. Carter Edwards H, Trott CR, Sunderland D (2014) Kokkos: Enabling manycore performance portability through polymorphic memory access patterns. J Parallel Distrib Comput 74(12):3202–3216. https://doi.org/10.1016/j.jpdc.2014.07.003

    Article  Google Scholar 

  51. Trott CR, Lebrun-Grandié D, Arndt D, Ciesko J, Dang V, Ellingwood N, Gayatri R, Harvey E, Hollman DS, Ibanez D, Liber N, Madsen J, Miles J, Poliakoff D, Powell A, Rajamanickam S, Simberg M, Sunderland D, Turcksin B, Wilke J (2022) Kokkos 3: Programming model extensions for the exascale era. IEEE Trans Parallel Distrib Syst 33(4):805–817. https://doi.org/10.1109/TPDS.2021.3097283

    Article  Google Scholar 

  52. Korch M, Werner T (2018) Accelerating explicit ode methods on gpus by kernel fusion. Concurr Comput 30(18):4470. https://doi.org/10.1002/cpe.4470

    Article  Google Scholar 

  53. Wang G, Lin Y, Yi W (2010) Kernel fusion: an effective method for better power efficiency on multithreaded gpu. In: 2010 IEEE/ACM Int’l Conference on Green Computing and Communications Int’l Conference on Cyber, Physical and Social Computing, pp 344–350. IEEE, Hangzhou. https://doi.org/10.1109/GreenCom-CPSCom.2010.102

  54. Wahib M, Maruyama N (2014) Scalable kernel fusion for memory-bound gpu applications. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. SC ’14, pp 191–202. IEEE Press, New Orleans, Louisana. https://doi.org/10.1109/SC.2014.21

  55. Merson J (2020) Kokkos-Packed-Data

  56. Corrales MA, Cronin DS (2021) Importance of the cervical capsular joint cartilage geometry on head and facet joint kinematics assessed in a finite element neck model. J Biomech 123:110528. https://doi.org/10.1016/j.jbiomech.2021.110528

    Article  CAS  PubMed  Google Scholar 

  57. Bermel EA, Thakral S, Claeson AA, Ellingson AM, Barocas VH (2020) Asymmetric in-plane shear behavior of isolated cadaveric lumbar facet capsular ligaments: implications for subject specific biomechanical models. J Biomech 105:109814. https://doi.org/10.1016/j.jbiomech.2020.109814

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gacek E, Bermel EA, Ellingson AM, Barocas VH (2021) Through-thickness regional variation in the mechanical characteristics of the lumbar facet capsular ligament. Biomech Model Mechanobiol 20(4):1445–1457. https://doi.org/10.1007/s10237-021-01455-3

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ita ME, Ghimire P, Welch RL, Troche HR, Winkelstein BA (2020) Intra-articular collagenase in the spinal facet joint induces pain, drg neuron dysregulation and increased mmp-1 absent evidence of joint destruction. Sci Rep 10(1):21965. https://doi.org/10.1038/s41598-020-78811-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh S, Kartha S, Bulka BA, Stiansen NS, Winkelstein BA (2019) Physiologic facet capsule stretch can induce pain & upregulate matrix metalloproteinase-3 in the dorsal root ganglia when preceded by a physiological mechanical or nonpainful chemical exposure. Clin Biomech 64:122–130. https://doi.org/10.1016/j.clinbiomech.2018.01.009

    Article  Google Scholar 

  61. Cohen SP (2015) Epidemiology, diagnosis, and treatment of neck pain. Mayo Clin Proc 90(2):284–299. https://doi.org/10.1016/j.mayocp.2014.09.008

    Article  PubMed  Google Scholar 

  62. Côté P, Cassidy DJ, Carroll LJ, Kristman V (2004) The annual incidence and course of neck pain in the general population: a population-based cohort study. Pain 112(3):267–273. https://doi.org/10.1016/j.pain.2004.09.004

    Article  PubMed  Google Scholar 

  63. Hoy DG, Protani M, De R, Buchbinder R (2010) The epidemiology of neck pain. Best Pract Res Clin Rheumatol 24(6):783–792. https://doi.org/10.1016/j.berh.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  64. Ban E, Zhang S, Zarei V, Barocas VH, Winkelstein BA, Picu CR (2017) Collagen organization in facet capsular ligaments varies with spinal region and with ligament deformation. J Biomech Eng 139(7):071009. https://doi.org/10.1115/1.4036019

    Article  Google Scholar 

  65. Zarei V, Zhang S, Winkelstein BA, Barocas VH (2017) Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations. J R Soc Interface 14(135):20170326. https://doi.org/10.1098/rsif.2017.0326

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hatami-Marbini H, Picu RC (2008) Scaling of nonaffine deformation in random semiflexible fiber networks. Phys Rev E 77(6):062103. https://doi.org/10.1103/PhysRevE.77.062103

    Article  ADS  CAS  Google Scholar 

  67. Huisman EM, Lubensky TC (2011) Internal stresses, normal modes, and nonaffinity in three-dimensional biopolymer networks. Phys Rev Lett 106(8):088301. https://doi.org/10.1103/PhysRevLett.106.088301

    Article  ADS  CAS  PubMed  Google Scholar 

  68. Picu RC (2011) Mechanics of random fiber networks—a review. Soft Matter 7(15):6768–6785. https://doi.org/10.1039/C1SM05022B

    Article  ADS  CAS  Google Scholar 

  69. Chandran PL, Barocas VH (2006) Affine versus non-affine fibril kinematics in collagen networks: theoretical studies of network behavior. J Biomech Eng 128(2):259–270

    Article  PubMed  Google Scholar 

  70. Sherman VR, Yang W, Meyers MA (2015) The materials science of collagen. J Mech Behav Biomed Mater 52:22–50. https://doi.org/10.1016/j.jmbbm.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  71. Grekas G, Proestaki M, Rosakis P, Notbohm J, Makridakis C, Ravichandran (2019) Cells exploit a phase transition to establish interconnections in fibrous extracellular matrices. arXiv:1905.11246 [cond-mat, physics:physics]

  72. Hatami-Marbini H, Shahsavari A, Picu RC (2013) Multiscale modeling of semiflexible random fibrous structures. Comput Aided Des 45(1):77–83. https://doi.org/10.1016/j.cad.2011.10.002

    Article  Google Scholar 

  73. Picu RC, Deogekar S, Islam MR (2018) Poisson’s contraction and fiber kinematics in tissue: insight from collagen network simulations. J Biomech Eng 140(2):021002. https://doi.org/10.1115/1.4038428

    Article  Google Scholar 

  74. Licup AJ, Münster S, Sharma A, Sheinman M, Jawerth LM, Fabry B, Weitz DA, MacKintosh FC (2015) Stress controls the mechanics of collagen networks. Proc Natl Acad Sci 112(31):9573–9578. https://doi.org/10.1073/pnas.1504258112

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Head DA, Levine AJ, MacKintosh FC (2005) Mechanical response of semiflexible networks to localized perturbations. Phys Rev E 72(6):061914. https://doi.org/10.1103/PhysRevE.72.061914

    Article  ADS  CAS  Google Scholar 

  76. Levine AJ, Head DA, MacKintosh FC (2004) The deformation field in semiflexible networks. J Phys: Condens Matter 16(22):2079–2088. https://doi.org/10.1088/0953-8984/16/22/006

    Article  ADS  CAS  Google Scholar 

  77. Chandran PL, Barocas VH (2007) Deterministic material-based averaging theory model of collagen gel micromechanics. J Biomech Eng 129(2):137–147. https://doi.org/10.1115/1.2472369

    Article  PubMed  Google Scholar 

  78. Stylianopoulos T, Barocas VH (2007) Volume-averaging theory for the study of the mechanics of collagen networks. Comput Methods Appl Mech Eng 196(31–32):2981–2990. https://doi.org/10.1016/j.cma.2006.06.019

    Article  ADS  MathSciNet  Google Scholar 

  79. Aghvami M, Barocas VH, Sander EA (2013) Multiscale mechanical simulations of cell compacted collagen gels. J Biomech Eng 135(7):071004. https://doi.org/10.1115/1.4024460

    Article  Google Scholar 

  80. Stylianopoulos T, Barocas VH (2007) Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls. J Biomech Eng 129(4):611–618. https://doi.org/10.1115/1.2746387

    Article  PubMed  Google Scholar 

  81. Zarei V, Liu CJ, Claeson AA, Akkin T, Barocas VH (2017) Image-based multiscale mechanical modeling shows the importance of structural heterogeneity in the human lumbar facet capsular ligament. Biomech Model Mechanobiol 16(4):1425–1438. https://doi.org/10.1007/s10237-017-0896-4

    Article  PubMed  PubMed Central  Google Scholar 

  82. Chan VWL, Tobin WR, Zhang S, Winkelstein BA, Barocas VH, Shephard MS, Picu CR (2019) Image-based multi-scale mechanical analysis of strain amplification in neurons embedded in collagen gel. Comput Methods Biomech Biomed Engin 22(2):113–129. https://doi.org/10.1080/10255842.2018.1538414

    Article  PubMed  Google Scholar 

  83. Žagar G, Onck PR, van der Giessen E (2015) Two fundamental mechanisms govern the stiffening of cross-linked networks. Biophys J 108(6):1470–1479. https://doi.org/10.1016/j.bpj.2015.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Institutes of Health (NIH) through Grant No. U01 AT010326-06. This material is based in part upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1744655. Computational resources were provided by the Rensselaer Polytechnic Institute Center for Computational Innovations that is partly supported by a National Science Foundation through MRI Grant Number 1828083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob S. Merson.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merson, J.S., Picu, C.R. & Shephard, M.S. A new open-source framework for multiscale modeling of fibrous materials on heterogeneous supercomputers. Engineering with Computers (2024). https://doi.org/10.1007/s00366-023-01934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00366-023-01934-4

Keywords

Navigation