Skip to main content
Log in

Analysis of a Modified Regularity-Preserving Euler Scheme for Parabolic Semilinear SPDEs: Total Variation Error Bounds for the Numerical Approximation of the Invariant Distribution

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We propose a modification of the standard linear implicit Euler integrator for the weak approximation of parabolic semilinear stochastic PDEs driven by additive space-time white noise. This new method can easily be combined with a finite difference method for the spatial discretization. The proposed method is shown to have improved qualitative properties compared with the standard method. First, for any time-step size, the spatial regularity of the solution is preserved, at all times. Second, the proposed method preserves the Gaussian invariant distribution of the infinite dimensional Ornstein–Uhlenbeck process obtained when the nonlinearity is removed, for any time-step size. The weak order of convergence of the proposed method is shown to be equal to 1/2 in a general setting, like for the standard Euler scheme. A stronger weak approximation result is obtained when considering the approximation of a Gibbs invariant distribution, when the nonlinearity is a gradient: one obtains an approximation in total variation distance of order 1/2, which does not hold for the standard method. This is the first result of this type in the literature and this is the major and most original result of this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Abdulle, C.-E. Bréhier, and G. Vilmart. Convergence analysis of explicit stabilized integrators for parabolic semilinear stochastic pdes. IMA J. Numer. Anal., 2021.

  2. A. Andersson, M. Hefter, A. Jentzen, and R. Kurniawan. Regularity properties for solutions of infinite dimensional Kolmogorov equations in Hilbert spaces. Potential Anal., 50(3):347–379, 2019.

    Article  MathSciNet  Google Scholar 

  3. A. Andersson, R. Kruse, and S. Larsson. Duality in refined Sobolev-Malliavin spaces and weak approximation of SPDE. Stoch. Partial Differ. Equ. Anal. Comput., 4(1):113–149, 2016.

    MathSciNet  Google Scholar 

  4. A. Andersson and S. Larsson. Weak convergence for a spatial approximation of the nonlinear stochastic heat equation. Math. Comp., 85(299):1335–1358, 2016.

    Article  MathSciNet  Google Scholar 

  5. S. Boyaval, S. Martel, and J. Reygner. Finite-volume approximation of the invariant measure of a viscous stochastic scalar conservation law. IMA J. Numer. Anal.

  6. C.-E. Bréhier. Approximation of the invariant measure with an Euler scheme for stochastic PDEs driven by space-time white noise. Potential Anal., 40(1):1–40, 2014.

    Article  MathSciNet  Google Scholar 

  7. C.-E. Bréhier. Influence of the regularity of the test functions for weak convergence in numerical discretization of SPDEs. J. Complexity, 56:101424, 15, 2020.

  8. C.-E. Bréhier. Analysis of a modified Euler scheme for parabolic semilinear stochastic PDEs. Arxiv preprint, 2022.

  9. C.-E. Bréhier. Approximation of the invariant distribution for a class of ergodic SPDEs using an explicit tamed exponential Euler scheme. ESAIM Math. Model. Numer. Anal., 56(1):151–175, 2022.

    Article  MathSciNet  Google Scholar 

  10. C.-E. Bréhier. Uniform weak error estimates for an asymptotic preserving scheme applied to a class of slow-fast parabolic semilinear SPDEs. Arxiv preprint, 2022.

  11. C.-E. Bréhier and A. Debussche. Kolmogorov equations and weak order analysis for SPDEs with nonlinear diffusion coefficient. J. Math. Pures Appl. (9), 119:193–254, 2018.

    Article  MathSciNet  Google Scholar 

  12. C.-E. Bréhier, A. Debussche, and G. Vilmart. Analysis of preconditioned schemes for the approximation of the invariant distribution for parabolic semilinear stochastic PDEs. In preparation.

  13. C.-E. Bréhier and L. Goudenège. High-order integrators for the approximation of the invariant distribution of stochastic Allen-Cahn equation. In preparation.

  14. C.-E. Bréhier and L. Goudenège. Weak convergence rates of splitting schemes for the stochastic Allen-Cahn equation. BIT, 60(3):543–582, 2020.

    Article  MathSciNet  Google Scholar 

  15. C.-E. Bréhier, M. Hairer, and A. M. Stuart. Weak error estimates for trajectories of SPDEs under spectral Galerkin discretization. J. Comput. Math., 36(2):159–182, 2018.

    Article  MathSciNet  Google Scholar 

  16. C.-E. Bréhier and M. Kopec. Approximation of the invariant law of SPDEs: error analysis using a Poisson equation for a full-discretization scheme. IMA J. Numer. Anal., 37(3):1375–1410, 2017.

    MathSciNet  Google Scholar 

  17. C.-E. Bréhier and G. Vilmart. High order integrator for sampling the invariant distribution of a class of parabolic stochastic PDEs with additive space-time noise. SIAM J. Sci. Comput., 38(4):A2283–A2306, 2016.

    Article  MathSciNet  Google Scholar 

  18. M. Cai, S. Gan, and X. Wang. Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise. J. Sci. Comput., 86(3):Paper No. 34, 30, 2021.

  19. S. Cerrai. Second order PDE’s in finite and infinite dimension, volume 1762 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2001. A probabilistic approach.

  20. Z. Chen, S. Gan, and X. Wang. A full-discrete exponential Euler approximation of the invariant measure for parabolic stochastic partial differential equations. Appl. Numer. Math., 157:135–158, 2020.

    Article  MathSciNet  Google Scholar 

  21. D. Conus, A. Jentzen, and R. Kurniawan. Weak convergence rates of spectral Galerkin approximations for SPDEs with nonlinear diffusion coefficients. Ann. Appl. Probab., 29(2):653–716, 2019.

    Article  MathSciNet  Google Scholar 

  22. J. Cui and J. Hong. Strong and weak convergence rates of a spatial approximation for stochastic partial differential equation with one-sided Lipschitz coefficient. SIAM J. Numer. Anal., 57(4):1815–1841, 2019.

    Article  MathSciNet  Google Scholar 

  23. J. Cui, J. Hong, and L. Sun. Weak convergence and invariant measure of a full discretization for parabolic SPDEs with non-globally Lipschitz coefficients. Stochastic Process. Appl., 134:55–93, 2021.

    Article  MathSciNet  Google Scholar 

  24. G. Da Prato and J. Zabczyk. Ergodicity for infinite-dimensional systems, volume 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.

  25. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions, volume 152 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, second edition, 2014.

  26. A. Debussche. Weak approximation of stochastic partial differential equations: the nonlinear case. Math. Comp., 80(273):89–117, 2011.

    Article  MathSciNet  Google Scholar 

  27. A. Debussche and J. Printems. Weak order for the discretization of the stochastic heat equation. Math. Comp., 78(266):845–863, 2009.

    Article  ADS  MathSciNet  Google Scholar 

  28. S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. Characterization and convergence.

  29. I. Gyöngy. Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal., 11(1):1–37, 1999.

    Article  MathSciNet  Google Scholar 

  30. I. Gyöngy and D. Nualart. Implicit scheme for stochastic parabolic partial differential equations driven by space-time white noise. Potential Anal., 7(4):725–757, 1997.

    Article  MathSciNet  Google Scholar 

  31. M. Hairer, A. M. Stuart, and J. Voss. Analysis of SPDEs arising in path sampling. II. The nonlinear case. Ann. Appl. Probab., 17(5-6):1657–1706, 2007.

  32. M. Hairer, A. M. Stuart, J. Voss, and P. Wiberg. Analysis of SPDEs arising in path sampling. I. The Gaussian case. Commun. Math. Sci., 3(4):587–603, 2005.

  33. J. Hong and X. Wang. Invariant measures for stochastic nonlinear Schrödinger equations, volume 2251 of Lecture Notes in Mathematics. Springer, Singapore, 2019. Numerical approximations and symplectic structures.

  34. A. Jentzen. Higher order pathwise numerical approximations of SPDEs with additive noise. SIAM J. Numer. Anal., 49(2):642–667, 2011.

    Article  MathSciNet  Google Scholar 

  35. A. Jentzen and P. E. Kloeden. Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465(2102):649–667, 2009.

  36. A. Jentzen and R. Kurniawan. Weak convergence rates for Euler-type approximations of semilinear stochastic evolution equations with nonlinear diffusion coefficients. Found. Comput. Math., 21(2):445–536, 2021.

    Article  MathSciNet  Google Scholar 

  37. R. Kruse. Strong and weak approximation of semilinear stochastic evolution equations, volume 2093 of Lecture Notes in Mathematics. Springer, Cham, 2014.

  38. G. J. Lord, C. E. Powell, and T. Shardlow. An introduction to computational stochastic PDEs. Cambridge Texts in Applied Mathematics. Cambridge University Press, New York, 2014.

    Book  Google Scholar 

  39. D. Nualart. Malliavin calculus and its applications, volume 110 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2009.

  40. J. Printems. On the discretization in time of parabolic stochastic partial differential equations. M2AN Math. Model. Numer. Anal., 35(6):1055–1078, 2001.

  41. X. Wang. Weak error estimates of the exponential Euler scheme for semi-linear SPDEs without Malliavin calculus. Discrete Contin. Dyn. Syst., 36(1):481–497, 2016.

    Article  MathSciNet  Google Scholar 

  42. X. Wang and S. Gan. Weak convergence analysis of the linear implicit Euler method for semilinear stochastic partial differential equations with additive noise. J. Math. Anal. Appl., 398(1):151–169, 2013.

    Article  MathSciNet  Google Scholar 

  43. A. Yagi. Abstract parabolic evolution equations and their applications. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010.

    Book  Google Scholar 

Download references

Acknowledgements

The author warmly thanks Gilles Vilmart for crucial discussions about the construction of the proposed method at an early stage of this work. He also thanks the referees for helpful comments and suggestions on the initial version of this manuscript. This work is partially supported by the following projects operated by the French National Research Agency: ADA (ANR-19-CE40-0019-02) and SIMALIN (ANR-19-CE40-0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Edouard Bréhier.

Additional information

Communicated by Tony Lelièvre.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bréhier, CE. Analysis of a Modified Regularity-Preserving Euler Scheme for Parabolic Semilinear SPDEs: Total Variation Error Bounds for the Numerical Approximation of the Invariant Distribution. Found Comput Math (2024). https://doi.org/10.1007/s10208-024-09644-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10208-024-09644-z

Keywords

Mathematics Subject Classification

Navigation