Skip to main content
Log in

Preparation and spectroscopic study of nanosized aluminate spinels Al2XO4 (X = Cd, Ni and Co) synthesized by solution combustion technique

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

By using the solution combustion method and urea as a fuel, we synthesized aluminate nano-powders Al2XO4 (X = Cd, Ni and Co) to study the effects of the cation type on the chemical bonding, the structural and the optical properties of these materials through the X-ray diffraction (XRD) technique, UV–visible diffuse reflectance spectroscopy (UV–Vis), and Fourier transform infrared (FTIR) spectroscopy. The analysis of the XRD patterns shows the formation of spinel-type crystallites in the cubic crystal structure with the space group Fd-3 m (N°227) for all Al2XO4 samples, the average size crystallites increases from 38.55 to 45.86 nm, while the lattice constant decreases from 8.046 to 8.089 Å when the cation type is changed from Ni, Cd to Co. The FT-IR spectrums show that the principal absorption peaks are located in the region 400–745 cm−1, those peaks are attributed to the aluminates in agreement with the XRD analysis. Besides, the slight shift the principal absorption peaks toward longer wavenumbers is due to the low electronegativity of Cd compared to the others two cations. The optical bandgap was determined through the analysis of the UV–Vis spectrum, the obtained values are 3.78, 3.82 and 3.75 eV for Al2CdO4, Al2NiO4 and Al2CoO4 respectively. The optical bandgap is assigned to charge transfer O2−: 2p → X2+: d orbital, the obtained findings show that the herein-studied spinels are a promising candidate for optoelectronic and photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. C Barathiraja and A Manikandan J. Supercond. Nov. Magn. 29 477 (2016)

    Article  CAS  Google Scholar 

  2. S Zinatloo-Ajabshir and M Salavati-Niasari Compos. Part B Eng. 174 106930 (2019)

    Article  CAS  Google Scholar 

  3. G Padmapriya, A Manikandan, V Krishnasamy and S K Jaganathan J. Supercond. Nov. Magn. 29 2141 (2016)

    Article  CAS  Google Scholar 

  4. M Amiri, M Salavati-Niasari, A Pardakhty and M Ahmadi Sci. Eng. C 76 1085 (2017)

    Article  CAS  Google Scholar 

  5. I H Gul, A Maqsood and M Naeem J. Alloys Compd. 507 201 (2010)

    Article  CAS  Google Scholar 

  6. F Tielens, M Calatayud, R Franco, J M Recio and J Pérez-Ramírez J. Phys. Chem. B 110 988 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. N Ballarini, F Cavani, S Passeri, L Pesaresi and A F Lee Catal. Gen. 366 184 (2009)

    Article  CAS  Google Scholar 

  8. M Salavati-Niasari and F Davar Mater. Lett. 63 441 (2009)

    Article  CAS  Google Scholar 

  9. T Tangcharoen J. Mater. Sci. Mater. Electron. 29 8995 (2018)

    Article  CAS  Google Scholar 

  10. B R Shanaj J. Theor. Comput. Sci. 03 1000149 (2016)

    Google Scholar 

  11. S H Hariz, H Lahmar, G Rekhila, A Bouhala, M Trari and M Benamira J. Photochem. Photobiol. Chem. 430 113986 (2022)

    Article  Google Scholar 

  12. M Amiri and K Eskandari Colloid Interf. Sci. 271 101982 (2019)

    Article  CAS  Google Scholar 

  13. S Jamil, S R Khan, B Sultana, M Hashmi and M Haroon J. Clust. Sci. 29 1099 (2018)

    Article  CAS  Google Scholar 

  14. A Radoń, A Drygała and Ł Hawełek Charact. 131 148 (2017)

    Article  Google Scholar 

  15. L S Devi, K N Devi and B I Sharma J. Phys. 88 477 (2014)

    CAS  Google Scholar 

  16. D Meziani, A Reziga, G Rekhila and B Bellal Manag. 82 244 (2014)

    CAS  Google Scholar 

  17. L Zou, F Li, X Xiang and D G Evans Mater. 18 5852 (2006)

    CAS  Google Scholar 

  18. A Chattopadhyay and B Mohanty Today Commun. 33 104196 (2022)

    CAS  Google Scholar 

  19. M Amiri, M Salavati-Niasari and A Akbari J. Hydrog. Energy 42 24846 (2017)

    Article  CAS  Google Scholar 

  20. S A U Portia and M Parthibavarman J. Clust. Sci. 33 2093 (2022)

    Article  CAS  Google Scholar 

  21. B Chandra Babu and S Buddhudu Indian J. Phys. 88 631 (2014)

    Article  ADS  CAS  Google Scholar 

  22. N Mir and M Salavati-Niasari Mater. Res. Bull. 48 1660 (2013)

    Article  CAS  Google Scholar 

  23. P Xiong, G Tan, W Zhang and A Xia J. Clust. Sci. 24 515 (2013)

    Article  CAS  Google Scholar 

  24. F Davar and M Salavati-Niasari J. Alloys Compd. 496 638 (2010)

    Article  CAS  Google Scholar 

  25. F Davar and Z Fereshteh J. Alloys Compd. 476 797 (2009)

    Article  CAS  Google Scholar 

  26. D Dhak and P Pramanik J. Am. Ceram. Soc. 89 1014 (2006)

    Article  CAS  Google Scholar 

  27. B Nageswara Rao, D Narsimulu and N Satyanarayana Indian J. Phys. 96 1017 (2022)

    Article  ADS  CAS  Google Scholar 

  28. A E Giannakas, A K Ladavos and G S Armatas Surf. Sci. 253 6969 (2007)

    Article  ADS  CAS  Google Scholar 

  29. F Deganello and A K Tyagi Prog. Cryst. Growth Charact. Mater. 64 23 (2018)

    Article  CAS  Google Scholar 

  30. F Li, J Ran, M Jaroniec and S Z Qiao Nanoscale 7 17590 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. S Zinatloo-Ajabshir, M S Morassaei, O Amiri and M Salavati-Niasari Int. 46 17186 (2020)

    CAS  Google Scholar 

  32. S Specchia and C Galletti Sci. and Catalysis 175 59 (2010)

    CAS  Google Scholar 

  33. S Moharana, B B Sahu, R Nayak and R N Mahaling Synthesis and properties of percolative metal oxide-polymer composites, (Elsevier) p 253 (2022)

    Google Scholar 

  34. T Tangcharoen J. Adv. Ceram. 8 352 (2019)

    Article  CAS  Google Scholar 

  35. J Chandradass and M Balasubramanian J. Alloys Compd. 506 395 (2010)

    Article  CAS  Google Scholar 

  36. M Salavati-Niasari, M Dadkhah and F Davar Polyhedron 28 3005 (2009)

    Article  CAS  Google Scholar 

  37. S K Stephen and T Varghese Mater. Charact. 174 110985 (2021)

    Article  CAS  Google Scholar 

  38. S Naeem, W Younas, A Awan and N Ahmad J. Chem. 15 103800 (2022)

    CAS  Google Scholar 

  39. S Peddarasi and D Sarkar Mater. Chem. Phys. 262 124275 (2021)

    Article  CAS  Google Scholar 

  40. M K Hussen and F B Dejene Optik 181 514 (2019)

    Article  ADS  CAS  Google Scholar 

  41. T Tangcharoen and W Klysubun J. Mol. Struct. 1182 219 (2019)

    Article  ADS  CAS  Google Scholar 

  42. Q Lu, Z Wei, X Wu, S Huang and M Ding Phys. Lett. 772 138582 (2021)

    CAS  Google Scholar 

  43. H Mansour and K Omri Phys. 525 110400 (2019)

    CAS  Google Scholar 

  44. M Benlembarek, N Salhi, R Benrabaa, A M Djaballah and A Boulahouache J. Hydrog. Energy 47 9239 (2022)

    Article  CAS  Google Scholar 

  45. M Jafari and S A Hassanzadeh-Tabrizi Powder Technol. 266 236 (2014)

    Article  CAS  Google Scholar 

  46. F Z Akika, M Benamira, H Lahmar, M Trari and I Avramova Interfaces 18 100406 (2020)

    CAS  Google Scholar 

  47. K Ahmed, M Rabah, M Khaled, B Mohamed and M Mokhtar Optik 127 8253 (2016)

    Article  ADS  CAS  Google Scholar 

  48. R Monsef and M Ghiyasiyan-Arani Sonochem. 42 201 (2018)

    Article  CAS  Google Scholar 

  49. N Doufar, M Benamira, H Lahmar, M Trari and I Avramova J. Photochem. Photobiol. Chem. 386 112105 (2020)

    Article  CAS  Google Scholar 

  50. M Ashraf, S M J Akhtar and M Mehmood Phys. J. Appl. Phys. 48 10501 (2009)

    Article  ADS  Google Scholar 

  51. R Kumar, M A Barakat, B A Al-Mur and F A Alseroury J. Clean. Prod. 246 119076 (2020)

    Article  CAS  Google Scholar 

  52. R C Gayathri, V Elakkiya and S Sumathi Inorg. Chem. Commun. 129 108634 (2021)

    Article  Google Scholar 

  53. T Gholami and M Salavati-Niasari J. Hydrog. Energy 41 9418 (2016)

    Article  CAS  Google Scholar 

  54. A Manikandan and M Durka J. Nanosci. Nanotechnol. 16 448 (2016)

    Article  CAS  PubMed  Google Scholar 

  55. L Messaadia, S Kiamouche, H Lahmar, R Masmoudi, H Boulahbel and M Trari J. Mol. Model. 29 38 (2023)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Khaled Mahi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahi, K., Benabdellah, G., Elassad Zemallach Ouari, K. et al. Preparation and spectroscopic study of nanosized aluminate spinels Al2XO4 (X = Cd, Ni and Co) synthesized by solution combustion technique. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03096-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03096-5

Keywords

Navigation