Skip to main content
Log in

Predictive study of the new double Half-Heusler compounds Hf2FeNiSb2, Nb2Co2GaSb and ScNbCo2Sb2, promising candidates for thermoelectric applications

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This study investigates the structural, electronic, and thermoelectric properties of three Double Half-Heusler (DHH) compounds: Hf2FeNiSb2, Nb2Co2GaSb, and ScNbCo2Sb2, using the full-potential linearized augmented plane wave (FP-LAPW) approach based on density functional theory (DFT) and implemented in the Wien2k software. In this analysis, we have used the GGA-PBE approximation for treating the exchange-correlation potential and the TB-mBJ-GGA approximation to enhance the energy band gaps, aiming to align them more closely with the experimental values. According to our research results, we can say that these compounds exhibit stability in the non-magnetic phase and exhibit no total magnetic moment. The determined band gap values for these compounds indicate their semiconducting nature, with indirect gap values of 0.42, 0.55, and 0.67 eV for Hf2FeNiSb2, Nb2Co2GaSb, and ScNbCo2Sb2, respectively. These values are determined using the TB-mBJ-GGA approximation, which is recommended for improving energy gap values and approaching experimental values. Moreover, these compounds demonstrate remarkable figure of merit (ZT) values approaching unity, indicating their potential as promising materials for thermoelectric applications. Specifically, the thermoelectric properties of Hf2FeNiSb2 and ScNbCo2Sb2 improve at low temperatures (0–100K), while Nb2Co2GaSb displays the best thermoelectric efficiency in the temperature range of 500–800K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Nakajima et al Sci. Adv. 1 e1500242 (2015)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. F Tafti et al PPhys. Rev. B 87 184504 (2013)

    Article  ADS  Google Scholar 

  3. P Mondal et al Phys. C: Supercond. Appl. 603 1354142 (2022)

    Article  ADS  CAS  Google Scholar 

  4. S-Y Lin et al Phys. Rev. B 91 094107 (2015)

    Article  ADS  Google Scholar 

  5. B Yan and A de Visser MRS Bull. 39 859 (2014)

    Article  CAS  Google Scholar 

  6. J Liu, G Cao, Z Zhou and H Liu J. Phys.: Condens. Matter 33 325501 (2021)

    ADS  CAS  Google Scholar 

  7. A Fert Rev. Mod. Phys. 80 1517 (2008)

    Article  ADS  CAS  Google Scholar 

  8. A. Zitouni et al. JETP Lett. 112, (2020)

  9. T Kubota, Z Wen and K Takanashi J. Magn. Magn. Mater. 492 165667 (2019)

    Article  CAS  Google Scholar 

  10. S Mesbah et al Solid State Commun. 328 114238 (2021)

    Article  CAS  Google Scholar 

  11. T Zhu, C Fu, H Xie, Y Liu and X Zhao Adv. Energy Mater. 5 1500588 (2015)

    Article  Google Scholar 

  12. G Remil et al Solid State Commun. 336 114422 (2021)

    Article  CAS  Google Scholar 

  13. R Bentata et al J. Comput. Electron. 20 1072 (2021)

    Article  CAS  Google Scholar 

  14. A Boucherdoud et al J. Mol. Model. 29 5 164 (2023)

    Article  CAS  PubMed  Google Scholar 

  15. H Prakash, N Chandra and R Prakash Mol. Opt. Phys. 40 1613 (2007)

    Article  ADS  CAS  Google Scholar 

  16. C Uher, J Yang, S Hu, D Morelli and G Meisner Phys. Rev. B 59 8615 (1999)

    Article  ADS  CAS  Google Scholar 

  17. M Wood, U Aydemir, S Ohno and G J Snyder J. Mater. Chem. A 6 9437 (2018)

    Article  CAS  Google Scholar 

  18. G Tan et al ACS Energy Lett. 3 705 (2018)

    Article  CAS  Google Scholar 

  19. A Bouadi et al Phys. Scripta 97 105710 (2022)

    Article  ADS  Google Scholar 

  20. Z Zhu et al Nat. Commun. 9 1 (2018)

    Article  ADS  Google Scholar 

  21. E S Toberer, A Zevalkink and G J Snyder J. Mater. Chem. 21 15843 (2011)

    Article  CAS  Google Scholar 

  22. F Casper, T Graf, S Chadov, B Balke and C Felser Semicond. Sci. Technol. 27 063001 (2012)

    Article  ADS  Google Scholar 

  23. P Qiu, X Huang, X Chen and L Chen J. Appl. Phys. 106 103703 (2009)

    Article  ADS  Google Scholar 

  24. S Chen and Z Ren Mater. Today 16 387 (2013)

    Article  CAS  Google Scholar 

  25. E Alleno Metals 8 864 (2018)

    Article  CAS  Google Scholar 

  26. S Anand, M Wood, Y Xia, C Wolverton and G J Snyder Joule 3 1226 (2019)

    Article  CAS  Google Scholar 

  27. P Hohenberg and W Kohn Phys. Rev. 136 B864 (1964)

    Article  ADS  Google Scholar 

  28. P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, J. Luitz, wien2k. An augmented plane wave+ local orbitals program for calculating crystal properties 60, 1 (2001)

  29. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. F Tran and P Blaha Phys. Rev. Lett. 102 226401 (2009)

    Article  ADS  PubMed  Google Scholar 

  31. F Tran, P Blaha and K Schwarz J. Phys.: Condens. Matter 19 196208 (2007)

    ADS  Google Scholar 

  32. G K Madsen and D J Singh Comput. Phys. Commun. 175 67 (2006)

    Article  ADS  CAS  Google Scholar 

  33. A Hassan et al J. Mol. Struct. 1274 134484 (2023)

    Article  CAS  Google Scholar 

  34. H Yu et al Appl. Catal. B: Environ. 284 119709 (2021)

    Article  CAS  Google Scholar 

  35. R Ullah et al Int. J. Energy Res. 45 8711 (2021)

    Article  CAS  Google Scholar 

  36. S Tabassam et al J. Mol. Graph. Model. 104 107841 (2021)

    Article  CAS  PubMed  Google Scholar 

  37. R Singla et al J. Alloys Comp. 859 157776 (2021)

    Article  CAS  Google Scholar 

  38. D.Hoat et al. Indian J. Phys., 1 (2021)

  39. M Husain et al Eur. Phys. J. Plus 136 624 (2021)

    Article  CAS  Google Scholar 

  40. F D Murnaghan Proc. Natl. Acad. Sci. 30 244 (1944)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. S Sakurada and N Shutoh Appl. Phys. Lett. 86 082105 (2005)

    Article  ADS  Google Scholar 

  42. T Zhu et al Adv. Mater. 29 1605884 (2017)

    Article  Google Scholar 

  43. B. Bouadjemi et al., in Spin.10 2050010 (World Scientific, 2020)

  44. W G Zeier et al Nat. Rev. Mater. 1 1 (2016)

    Article  Google Scholar 

  45. Y.B.Idriss et al. Revista Mexicana de Física 69, 051006 (2023)

  46. M Matougui et al Chin. J. Phys. 57 195 (2019)

    Article  CAS  Google Scholar 

  47. C Fu et al Nat. Commun. 6 8144 (2015)

    Article  ADS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Houari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mekhtiche, M., Matougui, M., Houari, M. et al. Predictive study of the new double Half-Heusler compounds Hf2FeNiSb2, Nb2Co2GaSb and ScNbCo2Sb2, promising candidates for thermoelectric applications. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03091-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03091-w

Keywords

Navigation