Skip to main content
Log in

From tropical forest to agroecosystems: changes in functional and species diversity of lizards in Mexican Caribbean

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

The transformation of tropical forests to agricultural systems modifies the diversity of species. Species respond differentially to disturbance depending on how they interact with their environment; therefore, the diversity of species that results following the transformation of a tropical forest could depend on the type of agricultural system that is established and the traits and functions of the species that make up the native communities. In this study, the effect of establishing two agricultural systems on an assemblage of tropical forest lizards was evaluated. To do so, the functional diversity and species diversity of lizards in tropical forest, a lime crop, and a coconut crop in southeastern Mexico were analyzed. The results showed that both the functional diversity and the diversity of species decreased when the tropical forest was transformed into either of these agricultural systems. However, this decrease differs in magnitude depending on the type of crop, since in the lime crop (less heterogeneous) there was a greater reduction in species richness, of functional groups, and of the members of the functional groups than in the coconut crop (more heterogeneous). The agricultural systems studied are not capable of maintaining the diversity of native species or the functional diversity of tropical forest lizards. Therefore, in landscapes modified by humans, it is essential to maintain fragments of native forest between agricultural plots to conserve those species highly susceptible to tropical forest transformation, as well as assemblages of species with a wide variety of functional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Amador L (2010) Técnicas para el monitoreo de vertebrados. Ecuador. Escuela de Biología Facultad de Biología, Facultad de Ciencias Naturales, Universidad de Guayaquil

  • Anderson L, Wahl D (2016) Two holocene paleofire records from Peten, Guatemala: implications for natural fire regime and prehispanic maya land use. Global Planet Change 138:82–92. https://doi.org/10.1016/j.gloplacha.2015.09.012

    Article  ADS  Google Scholar 

  • Badillo-Saldaña LM, Castellanos I, Ramírez-Bautista A (2020) How do crop area and management intensity influence tropical lizard species diversity? Trop Conserv Sci 13:1–8. https://doi.org/10.1177/1940082920910999

    Article  Google Scholar 

  • Barragán F, Moreno CE, Escobar F, Halffter G, Navarrete D (2011) Negative impacts of human land use on dung beetle functional diversity. PLoS ONE 6:e17976. https://doi.org/10.1371/journal.pone.0017976

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Berriozabal-Islas C, Badillo-Saldaña LM, Ramírez-Bautista A, Moreno CE (2017) Effects of habitat disturbance on lizard functional diversity in a tropical dry forest of the Pacific Coast of Mexico. Trop Conserv Sci 10:1–11. https://doi.org/10.1177/1940082917704972

    Article  Google Scholar 

  • Blaum N, Mosner E, Schwager M (2011) How functional is functional? Ecological groupings in terrestrial animal ecology: towards an animal functional type approach. Biodivers Conserv 20:2333–2345. https://doi.org/10.1007/s10531-011-9995-1

    Article  Google Scholar 

  • Carvajal-Cogollo JE, Urbina-Cardona JN (2008) Patrones de diversidad y composición de reptiles en fragmentos de bosque seco tropical de Córdoba, Colombia. Trop Conserv Sci 1:397–416

    Article  Google Scholar 

  • Chao A, Shen TJ (2010) Program SPADE: species prediction and diversity estimation. Program and user’s guide. CARE, Hsin-Chu, Taiwan

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 92:2533–2547. https://doi.org/10.1890/11-1952.1

    Article  Google Scholar 

  • Colwell RK, Chao A, Gotelli NJ, Shang-Yi L, Chang XM, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation, and comparison of assemblages. J Plant Ecol 5:3–21. https://doi.org/10.1093/jpe/rtr044

    Article  Google Scholar 

  • Córdoba-Tapia F, Mercado-Silva N (2019) Diversidad funcional de peces en ambientes antropizados. In: Ornelas-García CP, Álvarez F, Wagier A (eds) Antropización: primer análisis integral. Universidad Nacional Autónoma de México, Ciudad de México, pp 109–123

    Google Scholar 

  • Córdoba-Tapia F, Zambrano L (2015) La diversidad funcional en la ecología de comunidades. Ecosistemas 24(3):78–87. https://doi.org/10.7818/ECOS.2015.24-3.10

    Article  Google Scholar 

  • Cortés-Gómez AM, Ruiz-Agudelo CA, Valencia-Aguilar A, Ladle RJ (2015) Ecological functions of neotropical amphibians and reptiles: a review. Univ Sci 20:229–245. https://doi.org/10.11144/Javeriana.SC20-2.efna

    Article  Google Scholar 

  • Daltabuit M, Cisneros HB, Valenzuela E (2007) Globalización y sustentabilidad. El turismo en el sur de Quintana Roo. Universidad Nacional Autónoma de México. Centro Regional de Investigaciones Multidisciplinarias. Cuernavaca, Morelos

  • Deheuvels O, Rousseau GX, Quiroga GS, Franco MD, Cerda R, Vílchez-Mendoza SJ, Somarriba E (2014) Biodiversity is affected by changes in management intensity of coca-based agroforests. Agrofor Syst 88:1081–1099. https://doi.org/10.1007/s10457-014-9710-9

    Article  Google Scholar 

  • Díaz-García JM, Pineda E, López-Barrera F, Moreno CE (2017) Amphibian species and functional diversity as indicator of restoration success in tropical montane forest. Biodivers Conserv 26:2569–2589. https://doi.org/10.1007/s10531-017-1372-2

    Article  Google Scholar 

  • Feinsinger P (2003) El diseño de estudios de campo para la conservación de la biodiversidad. Editorial FAN, Santa Cruz de la Sierra, Bolivia

  • Flynn DFB, Gogol-Prokurat M, Nogeire T, Molinari N, Richer BT, Lin BB, Simpson N, Mayfield MM, DeClerck F (2009) Loss of functional diversity under land use intensification across multiple taxa. Ecol Lett 12:22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x

    Article  PubMed  Google Scholar 

  • Gallego-Ropero MC (2005) Intensidad de manejo del agroecosistema de café (Coffea arabica L.) (monocultivo y policultivo) y riqueza de especies de hormigas generalistas. Boletín Del Museo De Entomología De La Universidad Del Valle 6(2):16–29

    Google Scholar 

  • Glor R, Flecker A, Benard MF, Power AG (2001) Lizard diversity and agricultural disturbance in a Caribbean forest landscape. Biodivers Conserv 10:711–723. https://doi.org/10.1023/A:1016665011087

    Article  Google Scholar 

  • Gómez-Ortiz Y, Martín-Regalado CN, Ortega-Martínez IJ, Pérez-Hernández CX (2019) La diversidad funcional de las comunidades ecológicas. In: Moreno CE (ed) La biodiversidad en un mundo cambiante: Fundamentos teóricos y metodológicos para su estudio. Universidad Autónoma del Estado de Hidalgo/Libermex, Ciudad de México, pp 237–264

    Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S, Hsieh H, Iverson AL, Batáry P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc 281:20141358. https://doi.org/10.1098/rspb.2014.1358

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850. https://doi.org/10.1126/science.1244693

    Article  ADS  CAS  PubMed  Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Ecology, genetics, and evolution of metapopulations. Elsevier, New York

    Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistic software package for education and data analysis. Paleontol Electron 4(1):9

    Google Scholar 

  • Herrera-Sansores JC (2011) Clima. In: Pozo C, Armijo-Canto N, Calmé S (eds) Riqueza biológica de Quintana Roo Un análisis para su conservación, pp 50–56

  • Jost L (2006) Entropy and diversity. Oikos 113:363–375. https://doi.org/10.1111/j.2006.0030-1299.14714.x

    Article  ADS  Google Scholar 

  • Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiples traits. Ecology 91:299–305. https://doi.org/10.1890/08-2244.1

    Article  PubMed  Google Scholar 

  • Lamanna C, Blonder B, Violle C, Kraft NJB, Sandel B, Simova I, Donoghue JC II, Svenning JC, McGill BJ, Boyle B, Buzzard V, Dolins S, Jorgensen PM, Marcuse-Kubitza A, Morueta-Holme N, Peet RK, Piel WH, Regetz J, Schidhauer M, Spencer N, Thiers B, Wiser SK, Enquist BJ (2014) Functional trait space and the latitudinal diversity gradient. Proc Natl Acad Sci USA 111:13745–13750. https://doi.org/10.1073/pnas.1317722111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JC (1996) The Amphibians and Reptiles of the Yucatán Peninsula. Comstock Publishing Associates a division of Cornell University Press

  • Lettink M, Hare KM (2016) Sampling techniques for New Zealand lizards. In Chapple D (ed) New Zealand lizards. Berlin, Germany, pp 268–291

  • Luja-Molina VH (2005) Efectos del cambio de uso de suelo en la herpetofauna del ejido Caobas, Quintana Roo, México. Boletín De La Sociedad Herpetológica Mexicana 13:43–44

    Google Scholar 

  • MacGregor I, Payton ME (2013) Contrasting diversity values: statistical inferences based on overlapping confidence intervals. PLoS ONE 8:e56794. https://doi.org/10.1371/journal.pone.0056794

    Article  ADS  CAS  Google Scholar 

  • Macip-Ríos R, Muñoz-Alonso A (2008) Diversidad de lagartijas en cafetales y bosque primario en el Soconusco chiapaneco. Revista Mexicana De Biodiversidad 79:185–195

    Article  Google Scholar 

  • Martínez-Falcón AP, Zurita GA, Ortega-Martínez IJ, Moreno CE (2018) Populations and assemblages living on the edge: dung beetles responses to forests-pasture ecotones. PeerJ 6:e6148. https://doi.org/10.7717/peerj.6148

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Méndez N, Mejía O, Méndez de la Cruz FR (2016) The past, present and future of a lizard: The phylogeography and extinction risk of Sceloporus serrifer (Squamata: Phrynosomatidae) under a global warming scenario. Zool Anz 254:86–98. https://doi.org/10.1016/j.jcz.2014.12.004

    Article  Google Scholar 

  • Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111:112–118. https://doi.org/10.1111/j.0030-1299.2005.13886.x

    Article  ADS  Google Scholar 

  • Mason NWH, Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal change in assembly processes a long ecological gradient. J Veg Sci 24:794–806. https://doi.org/10.1111/jvs.12013

    Article  Google Scholar 

  • Modest-Byamungu R, Schleuning M, Ferger FW, Helbig-Bonitz M, Hemp A, Neu A, Vogeler A, Böhning-Gaese K, Tschapka M, Albrecht J (2021) Abiotic and biotic drivers of functional diversity and functional composition of bird and bat assemblages along a tropical elevation gradient. Divers Distrib 27:2344–2356. https://doi.org/10.1111/ddi.13403

    Article  Google Scholar 

  • Moreno CE, Barragán F, Pineda E, Pavón NP (2011) Reanálisis de la diversidad alfa: alternativas para interpretar y comparar información sobre comunidades ecológicas. Revista Mexicana De Biodiversidad 82:1249–1261. https://doi.org/10.22201/ib.20078706e.2011.4.745

    Article  Google Scholar 

  • Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876. https://doi.org/10.1111/j.1365-2435.2010.01695.x

    Article  Google Scholar 

  • Newman DG (1988) Evidence of predation on a young tuatara, Sphenodon punctatus, by kiore, Rattus exulans, on Lady Alice Island. N Z J Zool 15:443–446. https://doi.org/10.1080/03014223.1988.10422973

    Article  Google Scholar 

  • Palacios CP, Agüero B, Simonetti JA (2013) Agroforestry systems as habitat for herpetofauna: is there supporting evidence? Agrofor Syst 87:517–523. https://doi.org/10.1007/s10457-012-9571-z

    Article  Google Scholar 

  • Pan Q, Tian D, Naeem S, Auerswald K, Elser JJ, Bai Y, Huang J, Wang Q, Wang H, Wu J, Han X (2016) Effects of functional diversity loss on ecosystem functions are influenced by compensation. Ecology 97(9):2293–2302. https://doi.org/10.1002/ecy.1460

    Article  PubMed  Google Scholar 

  • Pavlov D, Bukvareva EN (2007) Biodiversity and Life support of humankind. Her Russ Acad Sci 77:550–562. https://doi.org/10.1134/S1019331607060020

    Article  Google Scholar 

  • Peña-Joya KE, Cupul-Magaña FG, Rodríguez-Zaragoza FA, Moreno CE, Téllez-López J (2020) Spatio-temporal discrepancies in lizard species and functional diversity. Community Ecol 21:1–12. https://doi.org/10.1007/s42974-020-00005-8

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (2008) Biodiversity conservation in tropical agrosystems. Ann N Y Acad Sci 1134:173–200. https://doi.org/10.1196/annals.1439.011

    Article  ADS  PubMed  Google Scholar 

  • Petchey OL, Gaston KJ (2006) Functional diversity (FD), species richness, and community composition. Ecol Lett 5(3):402–411. https://doi.org/10.1046/j.1461-0248.2002.00339.x

    Article  Google Scholar 

  • Pianka ER, Vitt LJ, Pelegrin N, Fitzgeral DB, Winemiller KO (2017) Toward a periodic table of niches or exploring the lizard niche hypervolume. Am Nat 190(5):601–616. https://doi.org/10.1086/693781

    Article  PubMed  Google Scholar 

  • Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344:987–998. https://doi.org/10.1126/science.1246752

    Article  CAS  Google Scholar 

  • Pineda E, Moreno CE (2015) Evaluación de la diversidad de especies en ensamblajes de vertebrados: un primer acercamiento midiendo y comparando la riqueza de especies. In Gallina-Tessaro (ed) Manual de técnicas del estudio de fauna. Instituto de Ecología Veracruz, México, pp 114–134

  • Renee S (2003) Prehispanic maya foodways: archaeological and microbotanical evidence from Escalera al cielo, Yucatán, Mexico. Dissertation Doctor of Phylosophy. University of California, Los Angeles, USA

  • Riemann JC, Ndriantsoa SH, Rödel MO, Glos J (2017) Functional diversity in a fragmented landscape-habitat alterations affect functional trait composition of frog assemblages in Madagascar. Glob Ecol Conserv 10:173–183. https://doi.org/10.1016/j.gecco.2017.03.005

    Article  Google Scholar 

  • Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162

    Article  ADS  Google Scholar 

  • Sánchez O (2011) Evaluación y monitoreo de poblaciones silvestres de reptiles. In Sánchez O, Zamorano P, Peters E, Mora H (eds) Temas sobre conservación de vertebrados silvestres en México. Secretaria del Medio Ambiente y Recursos Naturales, Instituto Nacional de Ecología, México, pp 83–120

  • Sanz FX (2007) La diversidad de los agroecosistemas. Ecosistemas 16:44–49

    Google Scholar 

  • Sarma SSS, Elías-Gutiérrez M (1999) A survey on the rotifer (Rotifera) fauna on the Yucatan Peninsula (Mexico). Rev Biol Trop 47(supl.1):187–196

    Google Scholar 

  • Shvidenko A, Barber CV, Persson R (2005) Forest and woodland systems. In: Hassan R, Scholes R, Ash N (eds) Ecosystems and human well-being: current state and trends, vol 1. Millennium ecosystem assessment. World Resources Institute, Washington, pp 585–621

    Google Scholar 

  • Suazo-Ortuño I, Alvarado-Díaz J, Martínez-Ramos M (2008) Effects of conservation of dry tropical forest to agricultural mosaic on herpetofaunal assemblages. Conserv Biol 22:362–374. https://doi.org/10.1111/j.1523-1739.2008.00883.x

    Article  PubMed  Google Scholar 

  • Suazo-Ortuño I, Benítez-Malvido J, Marroquín-Páramo J, Soto Y, Siliceo H, Alvarado-Díaz J (2018) Resilience and vulnerability of herpetofaunal functional groups to natural and human disturbances in a tropical dry forest. For Ecol Manag 426:145–157. https://doi.org/10.1016/j.foreco.2017.09.041

    Article  Google Scholar 

  • Trimble MJ, van Aarde RJ (2014) Amphibian and reptile communities and functional groups over a land-use gradient in a coastal tropical forest landscape of high richness and endemicity. Anim Conserv 17:1–13. https://doi.org/10.1111/acv.12111

    Article  Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitbread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Conserv 151:53–59. https://doi.org/10.1016/j.biocon.2012.01.068

    Article  Google Scholar 

  • Tsianou MA, Kallimanis AS (2016) Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers Conserv 25:117–132. https://doi.org/10.1007/s10531-015-1038-x

    Article  Google Scholar 

  • Val J, Travers SK, Oliver I, Koen TB, Eldridge DJ (2019) Recent grazing reduces reptile richness, but historic grazing filters reptiles based on their functional traits. J Appl Ecol 56:833–842. https://doi.org/10.1111/1365-2664.13324

    Article  Google Scholar 

  • Valencia-Aguilar A, Córtez-Gómez AM, Ruiz-Agudelo CA (2013) Ecosystem services provide by amphibians and reptiles in Neotropical ecosystems. Int J Biodivers Sci Ecosyst Serv Manag 9:257–272. https://doi.org/10.1080/21513732.2013.821168

    Article  Google Scholar 

  • Vidan E, Novosolov M, Bauer AM, Herrera FC, Chirio L, Nogueira C, Doan TM, Lewin A, Meirte D, Nagy ZT, Pincheira-Donoso D, Tallowin OJS, Torres-Carvajal O, Uetz P, Wagner P, Wang Y, Belmaker J, Meiri S (2019) The global biogeography of lizard functional groups. J Biogeogr 46:2147–2158. https://doi.org/10.1111/jbi.13667

    Article  Google Scholar 

  • Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multivariated framework in functional ecology. Ecology 89:2290–2301. https://doi.org/10.1890/07-1206.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We want to thank to D. Lara-Tufiño, R. Hernández-Austria, C. Beteta-Hernández, and W. Uc for their assistance in the field; also, Mr. Wilbert Uc, Sr. Alvaro, Sr. Cruz Nochebuena and Mr. Bartolo Poot for allowing us to carry out the study on land they own; and A. P. Martínez-Falcón and I. Ortega-Martínez for answering some questions about functional diversity analyses.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors; however, LMBS received a CONACyT scholarship (id: 375577) for master’s degree studies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were carried out by LMB-S and EP. The first draft of the manuscript was written by LMB-S and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luis M. Badillo-Saldaña.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badillo-Saldaña, L.M., Pineda, E. & Ramírez-Bautista, A. From tropical forest to agroecosystems: changes in functional and species diversity of lizards in Mexican Caribbean. Agroforest Syst (2024). https://doi.org/10.1007/s10457-023-00923-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10457-023-00923-2

Keywords

Navigation