Skip to main content
Log in

Mild solution for the time fractional magneto-hydrodynamics system

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, by using the Mittag–Leffler operators \(\{\mathcal {L}_{\alpha }(-t^{\alpha }\mathbb {I}):t\ge 0\}\) and \(\{\mathcal {L}_{\alpha ,\alpha }(-t^{\alpha }\mathbb {I}):t\ge 0\}\) we will prove the mild soltion of the time fractional magneto-hydrodynamics system with a fractional derivative of Caputo. Furthermore, by Itô integral, we will establish the mild solution of stochastic time fractional magneto-hydrodynamics system in \(\mathcal{E}\mathcal{N}_{p}^{\lambda } \cap \textrm{N}_{p,\lambda }^{2\alpha }\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

We do not involve any data in our work.

References

  1. Azanzal, A., Allalou, C., Melliani, S.: Well-posedness and blow-up of solutions for the 2D dissipative quasi-geostrophic equation in critical Fourier–Besov–Morrey spaces. J. Elliptic Parabol. Equ. 8(1), 23–48 (2022)

    Article  MathSciNet  Google Scholar 

  2. Azanzal, A., Allalou, C., Abbassi, A.: Well-posedness and analyticity for generalized Navier-Stokes equations in critical Fourier–Besov–Morrey spaces. J. Nonlinear Funct. Anal. 2021, 24 (2021)

    Google Scholar 

  3. Azanzal, A., Allalou, C., Melliani, S.: Global well-posedness, Gevrey class regularity and large time asymptotics for the dissipative quasi-geostrophic equation in Fourier-Besov spaces. Boletin de la Sociedad Matemática Mexicana 28(3), 74 (2022)

    Article  MathSciNet  Google Scholar 

  4. Azanzal, A., Allalou, C., Melliani, S.: Gevrey class regularity and stability for the Debye-Huckel system in critical Fourier–Besov–Morrey spaces. Boletim da Sociedade Paranaense de Matemática 41, 1–19 (2023)

    Article  Google Scholar 

  5. Bahouri, H., Chemin, J.Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations. Springer Science and Business Media, Berlin (2011)

    Book  Google Scholar 

  6. Caputo, M.: Vibrations of an infinite viscoelastic layer with a dissipative memory. J. Acoust. Soci Am. 56(3), 897–904 (1974)

    Article  Google Scholar 

  7. Chae, D., Lee, J.: Global well-posedness in the super-critical dissipative quasi-geostrophic equations. Commun. Math. Phys. 233, 297–311 (2003)

    Article  MathSciNet  Google Scholar 

  8. Chemin, J.Y., Desjardins, B., Gallagher, I., Grenier, E.: Mathematical geophysics: An introduction to rotating fluids and the Navier-Stokes equations. Clarendon Press, Oxford (2006)

    Book  Google Scholar 

  9. De Carvalho-Neto, P.M., Planas, G.: Mild solutions to the time fractional Navier-Stokes equations in RN. J. Differ. Equ. 259(7), 2948–2980 (2015)

    Article  Google Scholar 

  10. Eidelman, S.D., Kochubei, A.N.: Cauchy problem for fractional diffusion equations. J. Differ. Equ. 199(2), 211–255 (2004)

    Article  MathSciNet  Google Scholar 

  11. El Baraka, A., Toumlilin, M.: Global well-posedness and decay results for 3D generalized magneto-hydrodynamic equations in critical Fourier-Besov-Morrey spaces (2017)

  12. El Baraka, A., Toumlilin, M.: Well-posedness and stability for the generalized incompressible magneto-hydrodynamic equations in critical Fourier–Besov–Morrey spaces. J. Acta Math. Sci. 39, 1551–1567 (2019)

    Article  MathSciNet  Google Scholar 

  13. El Baraka, A., Toumlilin, M.: The uniform global well-posedness and the stability of the 3D generalized magnetohydrodynamic equations with the Coriolis force. J. Commun. Optim. Theory 2019, 12 (2019)

    Google Scholar 

  14. Ferreira, L.C.F., Lima, L.S.M.: Self-similar solutions for active scalar equations in Fourier–Besov–Morrey spaces. Monatshefte für Math. 175, 491–509 (2014)

    Article  MathSciNet  Google Scholar 

  15. Khan, I., Saqib, M., Ali, F.: Application of time-fractional derivatives with non-singular kernel to the generalized convective flow of Casson fluid in a microchannel with constant walls temperature. Eur. Phys. J. Special Topics 226(3791–380), 2 (2017)

    Google Scholar 

  16. Liu, Q., Zhao, J.: Global well-posedness for the generalized magneto-hydrodynamic equations in the critical Fourier?Herz spaces. J. Math. Anal. Appl. 420(2), 1301–1315 (2014)

    Article  MathSciNet  Google Scholar 

  17. Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. Ser. Adv. Math. Appl. Sci 1994, 246–251 (1994)

    MathSciNet  Google Scholar 

  18. Sen, M.: Introduction to fractional-order operators and their engineering applications. University of Notre Dame, Netherland (2014)

    Google Scholar 

  19. Shinbrot, M.: Fractional derivatives of solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 40(2), 139–154 (1971)

    Article  MathSciNet  Google Scholar 

  20. Sun, J., Fu, Z., Yin, Y., Yang, M.: Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov–Morrey spaces. J. Discrete Contin. Dyn. Syst.-B 26(6), 3409–3425 (2020)

    MathSciNet  Google Scholar 

  21. Sun, X., Liu, J and Zhang, J.: Global Well-Posedness for the fractional Navier-Stokes-Coriolis equations in function spaces characterized by semigroups. (2021)

  22. Wang, Y., Wang, K.: Global well-posedness of the three dimensional magnetohydrodynamics equations. J. Nonlinear Anal. Real World Appl. 17, 245–251 (2014)

    Article  MathSciNet  Google Scholar 

  23. Wang, W.: Global well-posedness and analyticity for the 3D fractional magnetohydrodynamics equations in variable Fourier-Besov spaces. J. Zeitschrift fur Angewandte Math. Phys. 70(6), 163 (2019)

    Article  MathSciNet  Google Scholar 

  24. Xiao, Y.: Packing measure of the sample paths of fractional Brownian motion. Trans. Am. Math. Soc. 348(8), 3193–3213 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Khaider.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaider, H., Azanzal, A., Abderrahmane, R. et al. Mild solution for the time fractional magneto-hydrodynamics system. Anal.Math.Phys. 14, 14 (2024). https://doi.org/10.1007/s13324-024-00871-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-024-00871-9

Keywords

Navigation