Skip to main content

Advertisement

Log in

Advances in the understanding of circRNAs that influence viral replication in host cells

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are non-coding RNAs discovered in recent years, which are produced by back-splicing involving the 3’ and 5’ ends of RNA molecules. There is increasing evidence that circRNAs have important roles in cancer, neurological diseases, cardiovascular and cerebrovascular diseases, and other diseases. In addition, host circRNAs and virus-encoded circRNAs participate in the body’s immune response, with antiviral roles. This review summarizes the mechanisms by which host and viral circRNAs interact during the host immune response. Comprehensive investigations have revealed that host circRNAs function as miRNA sponges in a particular manner, primarily by inhibiting viral replication. Viral circRNAs have more diverse functions, which generally involve promoting viral replication. In addition, in contrast to circRNAs from RNA viruses, circRNAs from DNA viruses can influence host cell migration, proliferation, and apoptosis, along with their effects on viral replication. In summary, circRNAs have potential as diagnostic and therapeutic targets, offering a foundation for the diagnosis and treatment of viral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All concerned data have been provided in the manuscript. There are no supplementary data.

References

  1. Zhu Y, Deng J, Nan ML, Zhang J, Okekunle A, Li JY, Yu XQ, Wang PH (2019) The interplay between pattern recognition receptors and autophagy in inflammation. Adv Exp Med Biol 1209:79–108. https://doi.org/10.1007/978-981-15-0606-2_6

    Article  CAS  PubMed  Google Scholar 

  2. Carty M, Guy C, Bowie AG (2021) Detection of viral infections by innate immunity. Biochem Pharmacol 183:114316

    Article  CAS  PubMed  Google Scholar 

  3. Qiu L, Wang T, Tang Q, Li G, Wu P, Chen K (2018) Long non-coding RNAs: regulators of viral infection and the interferon antiviral response. Front Microbiol 9:1621

    Article  PubMed  PubMed Central  Google Scholar 

  4. Meng X-Y, Luo Y, Anwar MN, Sun Y, Gao Y, Zhang H et al (2017) Long Non-Coding RNAs: emerging and versatile Regulators in Host–virus interactions. Front Immunol 8:1663

    Article  PubMed  PubMed Central  Google Scholar 

  5. Suarez B, Prats-Mari L, Unfried JP, Fortes P (2020) LncRNAs in the Type I Interferon Antiviral Response. Int J Mol Sci 21(17):6447. https://www.mdpi.com/1422-0067/21/17/6447

  6. Mohapatra S, Pioppini C, Ozpolat B, Calin GA (2021) Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer 20(1):24. https://doi.org/10.1186/s12943-021-01313-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Min J, Cao Y, Liu H, Liu D, Liu W, Li J (2022) RNA sequencing demonstrates that circular RNA regulates avian influenza virus replication in human cells. Int J Mol Sci 23(17):9901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A, Mayeda A (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63. https://doi.org/10.1093/nar/gkl151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274. https://doi.org/10.1016/j.ebiom.2018.07.036

    Article  PubMed  PubMed Central  Google Scholar 

  10. Patop IL, Wust S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  13. Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S et al (2018) A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol 19(1):1–14

    Article  Google Scholar 

  14. Lou YY, Wang QD, Lu YT, Tu MY, Xu X, Xia Y et al (2019) Differential circRNA expression profiles in latent human cytomegalovirus infection and validation using clinical samples. Physiol Genomics 51(2):51–58

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Y, Wang L, Qiu L, Pan R, Bai H, Jiang Y et al (2019) Expression patterns of novel circular RNAs in chicken cells after avian leukosis virus subgroup J infection. Gene 701:72–81

    Article  CAS  PubMed  Google Scholar 

  16. Wu Y, Zhao T, Deng R, Xia X, Li B, Wang X (2021) A study of differential circRNA and lncRNA expressions in COVID-19-infected peripheral blood. Sci Rep 11(1):1–14

    Google Scholar 

  17. Yao W, Pan J, Liu Z, Dong Z, Liang M, Xia S et al (2021) The cellular and viral circRNAome induced by respiratory syncytial virus infection. MBio 12(6):e03075-e3121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang L, You Z, Wang M, Yuan Y, Liu C, Yang N et al (2020) Genome-wide analysis of circular RNAs involved in Marek’s disease tumourigenesis in chickens. RNA Biol 17(4):517–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cadena C, Hur S (2017) Antiviral immunity and circular RNA: no end in sight. Mol Cell 67(2):163–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF et al (2017) Coordinated circRNA biogenesis and function with NF90/NF110 in viral infection. Mol cell 67(2):214-227.e7

    Article  CAS  PubMed  Google Scholar 

  21. Qiao Y, Zhao X, Liu J, Yang W (2019) Epstein-Barr virus circRNAome as host miRNA sponge regulates virus infection, cell cycle, and oncogenesis. Bioengineered 10(1):593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Yan Y, Lin W, Li A, Zhang H, Lei X et al (2019) Circular RNA Vav3 sponges gga-miR-375 to promote epithelial-mesenchymal transition. RNA Biol 16(1):118–132

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang D, Yu X, Zhang S, Duan M (2021) Effect of circular RNA has_circ_0070421 on replication of influenza A virus. Chin J Vet Sci 41(5):944–949

    Google Scholar 

  24. Shi N, Zhang S, Guo Y, Yu X, Zhao W, Zhang M et al (2021) CircRNA_0050463 promotes influenza A virus replication by sponging miR-33b-5p to regulate EEF1A1. Vet Microbiol 254:108995. https://doi.org/10.1016/j.vetmic.2021.108995

    Article  CAS  PubMed  Google Scholar 

  25. Qu Z, Meng F, Shi J, Deng G, Zeng X, Ge J et al (2021) A novel intronic circular RNA antagonizes influenza virus by absorbing a microRNA that degrades CREBBP and accelerating IFN-β production. MBio 12(4):e01017-e1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Prinarakis E, Chantzoura E, Thanos D, Spyrou G (2008) S-glutathionylation of IRF3 regulates IRF3–CBP interaction and activation of the IFNβ pathway. EMBO J 27(6):865–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo Y, Yu X, Su N, Shi N, Zhang S, Zhang L et al (2022) Identification and characterization of circular RNAs in the A549 cells following Influenza A virus infection. Vet Microbiol 267:109390

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Li X, Hou X, Ni W, Zhang M, Li H et al (2019) Comprehensive analysis of circRNAs expression profiles in different periods of MDBK cells infected with bovine viral diarrhea virus. Res Vet Sci 125:52–60. https://doi.org/10.1016/j.rvsc.2019.05.005

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Hou X, Li C, Cai X, Li X, Liu Z, Zhang X (2020) Screening of host Cell CircRNA related to replication of bovine viral diarrhea virus. Prog Vet Med 41(09):30–35

    Google Scholar 

  30. Xie H (2021) Role of hsa_circ_0001613 in the replication of Zika virus and its underlying mechanism. Peking Union Medical College

  31. Lu S, Zhu N, Guo W, Wang X, Li K, Yan J et al (2020) RNA-Seq revealed a circular RNA-microRNA-mRNA regulatory network in Hantaan virus infection. Front Cell Infect Microbiol 10:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Power D, Santoso N, Dieringer M, Yu J, Huang H, Simpson S et al (2015) IFI44 suppresses HIV-1 LTR promoter activity and facilitates its latency. Virology 481:142–150

    Article  CAS  PubMed  Google Scholar 

  33. Zhao X, Ma X, Guo J, Mi M, Wang K, Zhang C et al (2019) Circular RNA CircEZH2 suppresses transmissible gastroenteritis coronavirus-induced opening of mitochondrial permeability transition pore via targeting MiR-22 in IPEC-J2. Int J Biol Sci 15(10):2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Qiao X, Zhang S, Qin Y, Guo T, Hao Z et al (2018) Porcine transmissible gastroenteritis virus nonstructural protein 2 contributes to inflammation via NF-κB activation. Virulence 9(1):1685–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y, Ashraf U, Chen Z, Zhou D, Imran M, Ye J et al (2020) Genome-wide profiling of host-encoded circular RNAs highlights their potential role during the Japanese encephalitis virus-induced neuroinflammatory response. BMC Genomics 21(1):1–11

    Google Scholar 

  36. Xu Z (2021) Screening and Identification of circRNA Affecting the Replication of Newcastle Disease Virus. Anhui Agricultural University

  37. Dai CH, Gao ZC, Cheng JH, Yang L, Wu ZC, Wu SL et al (2022) The Competitive Endogenous RNA (ceRNA) Regulation in Porcine Alveolar Macrophages (3D4/21) Infected by Swine Influenza Virus (H1N1 and H3N2). Int J Mol Sci 23(3):1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Du L, Wang X, Liu J, Li J, Wang S, Lei J et al (2021) A previously undiscovered circular RNA, circTNFAIP3, and its role in coronavirus replication. MBio 12(6):e02984-e3021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang Y, Zhang H, An M, Zhao B, Ding H, Zhang Z et al (2018) Crosstalk in competing endogenous RNA networks reveals new circular RNAs involved in the pathogenesis of early HIV infection. J Transl Med 16(1):1–11

    Article  Google Scholar 

  40. Shi B, Sharifi HJ, DiGrigoli S, Kinnetz M, Mellon K, Hu W et al (2018) Inhibition of HIV early replication by the p53 and its downstream gene p21. Virol J 15(1):1–13

    Article  Google Scholar 

  41. Allouch A, David A, Amie SM, Lahouassa H, Chartier L, Margottin-Goguet F et al (2013) p21-mediated RNR2 repression restricts HIV-1 replication in macrophages by inhibiting dNTP biosynthesis pathway. Proc Natl Acad Sci 110(42):E3997–E4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Khan SZ, Mitra D (2011) Cyclin K inhibits HIV-1 gene expression and replication by interfering with cyclin-dependent kinase 9 (CDK9)-cyclin T1 interaction in Nef-dependent manner. J Biol Chem 286(26):22943–22954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yang Q, Li Y, Wang Y, Qiao X, Liu T, Wang H et al (2022) The circRNA circSIAE inhibits replication of coxsackie virus B3 by targeting miR-331–3p and thousand and One amino-acid kinase 2. Front Cell Infect Microbiol 11:1415

    Article  Google Scholar 

  44. Li J, Teng P, Yang F, Ou X, Zhang J, Chen W (2022) Bioinformatics and screening of a circular RNA-microRNA-mRNA regulatory network induced by Coxsackievirus Group B5 in Human Rhabdomyosarcoma Cells. Int J Mol Sci 23(9):4628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou TC, Li X, Chen LJ, Fan JH, Lai X, Tang Y et al (2018) Differential expression profile of hepatic circular RNA s in chronic hepatitis B. J Viral Hepatitis 25(11):1341–1351

    Article  CAS  Google Scholar 

  46. Wang L, Zhao J, Ren J, Hall KH, Moorman JP, Yao ZQ et al (2016) Protein phosphatase 1 abrogates IRF7-mediated type I IFN response in antiviral immunity. Eur J Immunol 46(10):2409–2419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Belloni L, Allweiss L, Guerrieri F, Pediconi N, Volz T, Pollicino T et al (2012) IFN-α inhibits HBV transcription and replication in cell culture and in humanized mice by targeting the epigenetic regulation of the nuclear cccDNA minichromosome. J Clin Investig 122(2):529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen C, Wu M, Zhang W, Lu W, Zhang M, Zhang Z et al (2016) MicroRNA-939 restricts Hepatitis B virus by targeting Jmjd3-mediated and C/EBPα-coordinated chromatin remodeling. Sci Rep 6(1):1–15

    Google Scholar 

  49. Fan H, Lv P, Lv J, Zhao X, Liu M, Zhang G et al (2017) miR-370 suppresses HBV gene expression and replication by targeting nuclear factor IA. J Med Virol 89(5):834–844

    Article  CAS  PubMed  Google Scholar 

  50. Zhang GL, Li YX, Zheng SQ, Liu M, Li X, Tang H (2010) Suppression of hepatitis B virus replication by microRNA-199a-3p and microRNA-210. Antiviral Res 88(2):169–175

    Article  CAS  PubMed  Google Scholar 

  51. Zhang L, Wang Z (2020) Circular RNA hsa_circ_0004812 impairs IFN-induced immune response by sponging miR-1287-5p to regulate FSTL1 in chronic hepatitis B. Virology journal 17(1):1–11

    Article  Google Scholar 

  52. Malmgaard L (2004) Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24(8):439–54. https://doi.org/10.1089/1079990041689665

    Article  CAS  PubMed  Google Scholar 

  53. Zhu K, Zhan H, Peng Y, Yang L, Gao Q, Jia H et al (2019) Plasma hsa_circ_0027089 is a diagnostic biomarker for hepatitis B virus-related hepatocellular carcinoma. Carcinogenesis 41(3):296–302. https://doi.org/10.1093/carcin/bgz154

    Article  CAS  PubMed Central  Google Scholar 

  54. Hu W, Wang X, Ding X, Li Y, Zhang X, Xie P et al (2012) MicroRNA-141 represses HBV replication by targeting PPARA. PLoS ONE 7(3):e34165

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  55. Du N, Li K, Wang Y, Song B, Zhou X, Duan S (2022) CircRNA circBACH1 facilitates hepatitis B virus replication and hepatoma development by regulating the miR-200a-3p/MAP3K2 axis. Histol Histopathol 37(9):863–877. https://doi.org/10.14670/HH-18-452

    Article  CAS  PubMed  Google Scholar 

  56. Jiang W, Wang L, Zhang Y, Li H (2020) Circ-ATP5H induces hepatitis B virus replication and expression by regulating miR-138-5p/TNFAIP3 axis. Cancer Manag Res 12:11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang M, Gu B, Yao G, Li P, Wang K (2020) Circular RNA expression profiles and the pro-tumorigenic function of circRNA_10156 in hepatitis B virus-related liver cancer. Int J Med Sci 17(10):1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bellazzo A, Di Minin G, Valentino E, Sicari D, Torre D, Marchionni L et al (2018) Cell-autonomous and cell non-autonomous downregulation of tumor suppressor DAB2IP by microRNA-149-3p promotes aggressiveness of cancer cells. Cell Death Differ 25(7):1224–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan Y, Yang X, Xie D (2022) Role of hsa_circ_0066966 in proliferation and migration of hepatitis B virus-related liver cancer cells. Exp Ther Med 23(1):1–10

    Google Scholar 

  60. Zhao CX, Yan ZX, Wen JJ, Fu D, Xu PP, Wang L et al (2021) CircEAF2 counteracts Epstein-Barr virus-positive diffuse large B-cell lymphoma progression via miR-BART19–3p/APC/β-catenin axis. Mol Cancer 20(1):1–17

    Article  Google Scholar 

  61. Ning S, Pagano J, Barber G (2011) IRF7: activation, regulation, modification and function. Genes Immun 12(6):399–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu S, Peng N, Xie J, Hao Q, Zhang M, Zhang Y et al (2015) Human hepatitis B virus surface and e antigens inhibit major vault protein signaling in interferon induction pathways. J Hepatol 62(5):1015–1023

    Article  CAS  PubMed  Google Scholar 

  63. Vincent IE, Zannetti C, Lucifora J, Norder H, Protzer U, Hainaut P et al (2011) Hepatitis B virus impairs TLR9 expression and function in plasmacytoid dendritic cells. PLoS ONE 6(10):e26315

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  64. Ma H, Han P, Ye W, Chen H, Zheng X, Cheng L et al (2017) The long noncoding RNA NEAT1 exerts antihantaviral effects by acting as positive feedback for RIG-I signaling. J Virol 91(9):e02250-e2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Firoozi Z, Mohammadisoleimani E, Shahi A, Naghizadeh MM, Mirzaei E, Asad AG et al (2022) Hsa_circ_0000479/Hsa-miR-149-5p/RIG-I, IL-6 Axis: A potential novel pathway to regulate immune response against COVID-19. Can J Infect Dis Med Microbiol 2022:2762582. https://doi.org/10.1155/2022/2762582

    Article  PubMed  PubMed Central  Google Scholar 

  66. Davis WG, Blackwell JL, Shi PY, Brinton MA (2007) Interaction between the cellular protein eEF1A and the 3′-terminal stem-loop of West Nile virus genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81(18):10172–10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carr J, Kua T, Clarke J, Calvert J, Zebol J, Beard M et al (2013) Reduced sphingosine kinase 1 activity in dengue virus type-2 infected cells can be mediated by the 3′ untranslated region of dengue virus type-2 RNA. J Gen Virol 94(11):2437–2448

    Article  CAS  PubMed  Google Scholar 

  68. Zhang X, Chu H, Wen L, Shuai H, Yang D, Wang Y et al (2020) Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg Microbes Infect 9(1):733–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yu T, Ding Y, Zhang Y, Liu Y, Li Y, Lei J et al (2019) Circular RNA GATAD2A promotes H1N1 replication through inhibiting autophagy. Vet Microbiol 231:238–245. https://doi.org/10.1016/j.vetmic.2019.03.012

    Article  CAS  PubMed  Google Scholar 

  70. Chen TC, Tallo-Parra M, Cao QM, Kadener S, Böttcher R, Pérez-Vilaró G et al (2020) Host-derived circular RNAs display proviral activities in Hepatitis C virus-infected cells. PLoS Pathog 16(8):e1008346

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y, Zhu M, Zhang X, Dai K, Liang Z, Pan J et al (2022) Micropeptide vsp21 translated by Reovirus circular RNA 000048 attenuates viral replication. Int J Biol Macromol 209:1179–1187

    Article  CAS  PubMed  Google Scholar 

  72. Zhang Y, Zhang X, Dai K, Zhu M, Liang Z, Pan J et al (2022) Bombyx mori Akirin hijacks a viral peptide vSP27 encoded by BmCPV circRNA and activates the ROS-NF-κB pathway against viral infection. Int J Biol Macromol 194:223–232

    Article  CAS  PubMed  Google Scholar 

  73. Ge J, Wang J, Xiong F, Jiang X, Zhu K, Wang Y et al (2021) Epstein-Barr virus-encoded circular RNA circBART2 2 promotes immune escape of nasopharyngeal carcinoma by regulating PD-L1. Cancer Res 81:5074–5088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Huang JT, Chen JN, Gong LP, Bi YH, Liang J, Zhou L et al (2019) Identification of virus-encoded circular RNA. Virology 529:144–151

    Article  CAS  PubMed  Google Scholar 

  75. Liu Q, Shuai M, Xia Y (2019) Knockdown of EBV-encoded circRNA circRPMS1 suppresses nasopharyngeal carcinoma cell proliferation and metastasis through sponging multiple miRNAs. Cancer Manag Res 11:8023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ungerleider NA, Jain V, Wang Y, Maness NJ, Blair RV, Alvarez X et al (2019) Comparative analysis of gammaherpesvirus circular RNA repertoires: conserved and unique viral circular RNAs. J Virol 93(6):e01952-e2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gong LP, Chen JN, Dong M, Xiao ZD, Feng ZY, Pan YH et al (2020) Epstein-Barr virus-derived circular RNA LMP 2A induces stemness in EBV-associated gastric cancer. EMBO Rep 21(10):e49689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abere B, Li J, Zhou H, Toptan T, Moore PS, Chang Y (2020) Kaposi’s sarcoma-associated herpesvirus-encoded circRNAs are expressed in infected tumor tissues and are incorporated into virions. MBio 11(1):e03027-e3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Toptan T, Abere B, Nalesnik MA, Swerdlow SH, Ranganathan S, Lee N et al (2018) Circular DNA tumor viruses make circular RNAs. Proc Natl Acad Sci 115(37):E8737–E8745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tagawa T, Gao S, Koparde VN, Gonzalez M, Spouge JL, Serquiña AP et al (2018) Discovery of Kaposi’s sarcoma herpesvirus-encoded circular RNAs and a human antiviral circular RNA. Proc Natl Acad Sci 115(50):12805–12810

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. Yao S, Jia X, Wang F, Sheng L, Song P, Cao Y et al (2021) CircRNA ARFGEF1 functions as a ceRNA to promote oncogenic KSHV-encoded viral interferon regulatory factor induction of cell invasion and angiogenesis by upregulating glutaredoxin 3. PLoS Pathog 17(2):e1009294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sekiba K, Otsuka M, Ohno M, Kishikawa T, Yamagami M, Suzuki T et al (2018) DHX9 regulates production of hepatitis B virus-derived circular RNA and viral protein levels. Oncotarget 9(30):20953

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zhu M, Liang Z, Pan J, Hu X, Zhang X, Xue R et al (2020) HBV pgRNA can generate a circRNA with two junction sites. Biorxiv 9:20935

    Google Scholar 

  84. Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C et al (2019) Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun 10(1):1–12

    Google Scholar 

  85. Chamseddin BH, Lee EE, Kim J, Zhan X, Yang R, Murphy KM et al (2019) Assessment of circularized E7 RNA, GLUT1, and PD-L1 in anal squamous cell carcinoma. Oncotarget 10(57):5958

    Article  PubMed  PubMed Central  Google Scholar 

  86. Abere B, Zhou H, Li J, Cao S, Toptan T, Grundhoff A et al (2020) Merkel cell polyomavirus encodes circular RNAs (circRNAs) enabling a dynamic circRNA/microRNA/mRNA regulatory network. MBio 11(6):e03059-e3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zang J, Lu D, Xu A (2020) The interaction of circRNAs and RNA binding proteins: an important part of circRNA maintenance and function. J Neurosci Res 98(1):87–97

    Article  CAS  PubMed  Google Scholar 

  88. Kudchodkar SB, Levine B (2009) Viruses and autophagy. Rev Med Virol 19(6):359–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hu X, Zhu M, Liu B, Liang Z, Huang L, Xu J et al (2018) Circular RNA alterations in the Bombyx mori midgut following B. mori nucleopolyhedrovirus infection. Mol Immunol 101:461–470

    Article  CAS  PubMed  Google Scholar 

  90. Liang D, Wilusz JE (2014) Short intronic repeat sequences facilitate circular RNA production. Genes Dev 28(20):2233–2247

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH et al (2013) Circular intronic long noncoding RNAs. Mol Cell 51(6):792–806

    Article  CAS  PubMed  Google Scholar 

  92. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA et al (2015) The RNA binding protein quaking regulates formation of circRNAs. Cell 160(6):1125–1134

    Article  CAS  PubMed  Google Scholar 

  93. Kameyama T, Suzuki H, Mayeda A (2012) Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites. Nucleic Acids Res 40(16):7896–7906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Karreth FA, Pandolfi PP (2013) ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov 3(10):1113–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Yin H, Zhang S, Shen M, Zhang Z, Huang H, Zhao Z et al (2021) Integrative analysis of circRNA/miRNA/mRNA regulatory network reveals the potential immune function of circRNAs in the Bombyx mori fat body. J Invertebr Pathol 179:107537

    Article  CAS  PubMed  Google Scholar 

  96. Liang ZZ, Guo C, Zou MM, Meng P, Zhang TT (2020) circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int 20(1):1–16

    Article  Google Scholar 

  97. Xiong DD, Dang YW, Lin P, Wen DY, He RQ, Luo DZ et al (2018) A circRNA–miRNA–mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma. J Transl Med 16(1):1–21

    Article  Google Scholar 

  98. Zhang M, Bai X, Zeng X, Liu J, Liu F, Zhang Z (2021) circRNA-miRNA-mRNA in breast cancer. Clin Chim Acta 523:120–130

    Article  CAS  PubMed  Google Scholar 

  99. Sakshi S, Jayasuriya R, Ganesan K, Xu B, Ramkumar KM (2021) Role of circRNA-miRNA-mRNA interaction network in diabetes and its associated complications. Molecular Therapy-Nucleic Acids 26:1291–1302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang J, Wang Y, Zhou R, Zhao J, Zhang Y, Yi D et al (2018) Host long noncoding RNA lncRNA-PAAN regulates the replication of influenza A virus. Viruses 10(6):330

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O (2018) Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol 15(8):1032–1039. https://doi.org/10.1080/15476286.2018.1435248

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded and supported by the National Natural Science Foundation of China (32160164), the Gansu Provincial Science and Technology Plan Project (22JR11RA239).

Author information

Authors and Affiliations

Authors

Contributions

SW, ZL and XY designed the concept of the project and wrote the manuscript; XL, GL, ZQ (Zhenyu Qiu), JW, DY, ZQ (Ziling Qiao) and ZM: writing—review and editing. All the authors contributed to the article and approved the submitted version. All the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zhenbin Liu or Xiaoming Yang.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

The editorial responsibility editor is Deyin Guo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Li, X., Liu, G. et al. Advances in the understanding of circRNAs that influence viral replication in host cells. Med Microbiol Immunol 213, 1 (2024). https://doi.org/10.1007/s00430-023-00784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00430-023-00784-7

Keywords

Navigation