Skip to main content
Log in

Modification of Physicochemical Properties of Platinum-Titanium Catalysts for Ammonia Slip Oxidation

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Catalysts for the selective oxidation of ammonia to molecular nitrogen are essential for the fight against environmental pollution due to vehicle and industrial emissions. This work reports a study of Pt/TiO2-based K-modified catalysts for the selective oxidation of ammonia. The Pt/TiO2 catalysts are prepared by impregnating a commercial TiO2 support (Degussa, P25 Aeroxide) by a platinum nitrate precursor followed by depositing small amounts of potassium with variation of the precursor nature (KOH, KNO3, KCl). The influence of a promoting additive on the catalysts properties is considered using a complex of physicochemical and kinetic methods such as powder XRD, X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of NH3 (NH3-TPD), NH3+O2 temperature programmed reaction (NH3+O2-TPR). According to the XRD data, dispersed platinum particles with a coherent scattering region of no more than 5 nm are formed in the samples. The XPS data indicate that the oxidation state of platinum can be changed by varying the potassium precursor. It is shown that the potassium chloride precursor enhances the selectivity to molecular nitrogen in the temperature range up to 200 °C. The changes in the acidic properties of the sample surfaces are revealed using the NH3-TPD data, and the changes are compared with catalytic characteristics of the samples in the reaction of ammonia oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

REFERENCES

  1. A. De Marco, C. Proietti, A. Anav, L. Ciancarella, I. D. Elia, S. Fares, M. Francesca, L. Fusaro, M. Gualtieri, F. Manes, A. Marchetto, M. Mircea, E. Paoletti, A. Piersanti, M. Rogora, L. Salvati, E. Salvatori, A. Screpanti, G. Vialetto, M. Vitale, and C. Leonardi. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int., 2019, 125, 320-333. https://doi.org/10.1016/j.envint.2019.01.064

    Article  CAS  PubMed  Google Scholar 

  2. M. Jabłońska and A. M. Robles. A comparative mini-review on transition metal oxides applied for the selective catalytic ammonia oxidation (NH3–SCO). Materials, 2022, 15, 4770. https://doi.org/10.3390/ma15144770

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. G. Xu, W. Shan, Y. Yu, Y. Shan, X. Wu, Y. Wu, S. Zhang, L. He, S. Shuai, H. Pang, X. Jiang, H. Zhang, L. Guo, S. Wang, F. S. Xiao, X. Meng, F. Wu, D. Yao, Y. Ding, H. Yin, and H. He. Advances in emission control of diesel vehicles in China. J. Environ. Sci., 2023, 123, 15-29. https://doi.org/10.1016/j.jes.2021.12.012

    Article  CAS  Google Scholar 

  4. A. Boubnov, S. Dahl, E. Johnson, A. P. Molina, S. B. Simonsen, F. M. Cano, S. Helveg, L. J. Lemus-Yegres, and J. D. Grunwaldt. Structure-activity relationships of Pt/Al2O3catalysts for CO and NO oxidation at diesel exhaust conditions. Appl. Catal., B, 2012, 126, 315-325. https://doi.org/10.1016/j.apcatb.2012.07.029

    Article  CAS  Google Scholar 

  5. S. A. Yashnik. Kataliticheskie sistemy neitralizatsii vybrosov avtomobilei s dizel′nym dvigatelem: sovremennye zadachi i tekhnologicheskie resheniya po uluchsheniyu okislitel′nogo katalizatora (Catalytic systems for neutralizing emissions from diesel vehicles: modern challenges and technological solutions to improve the oxidation catalyst.). Katal. Prom-sti, 2022, 22, 25-41. https://doi.org/10.18412/1816-0387-2022-2-25-41 [In Russian]

    Article  CAS  Google Scholar 

  6. M. Colombo, I. Nova, E. Tronconi, V. Schmeißer, B. Bandl-Konrad, and L. Zimmermann. Experimental and modeling study of a dual-layer (SCR+PGM) NH3 slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part 1. Kinetics for the PGM component and analysis of SCR/PGM interactions. Appl. Catal., B, 2013, 142/143, 861-876. https://doi.org/10.1016/j.apcatb.2012.10.031

    Article  CAS  Google Scholar 

  7. M. Colombo, I. Nova, E. Tronconi, and G. Koltsakis. A modeling study of NH3 slip catalysts: Analysis of the SCR/PGM interactions. Top. Catal., 2013, 56, 177-181. https://doi.org/10.1007/s11244-013-9948-x

    Article  CAS  Google Scholar 

  8. T. Lan, Y. Zhao, J. Deng, J. Zhang, L. Shi, and D. Zhang. Selective catalytic oxidation of NH3 over noble metal-based catalysts: State of the art and future prospects. Catal. Sci. Technol., 2020, 10 5792-5810. https://doi.org/10.1039/d0cy01137a

    Article  CAS  Google Scholar 

  9. S. Shrestha, M. P. Harold, K. Kamasamudram, and A. Yezerets. Ammonia oxidation on structured composite catalysts. Top. Catal., 2013, 56 ,182-186. https://doi.org/10.1007/s11244-013-9949-9

    Article  CAS  Google Scholar 

  10. T. K. Torp, B. B. Hansen, P. N. R. Vennestrøm, T. V. W. Janssens, and A. D. Jensen. Modeling and optimization of multi-functional ammonia slip catalysts for diesel exhaust aftertreatment. Emiss. Control Sci. Technol., 2021, 7, 7-25. https://doi.org/10.1007/s40825-020-00183-x

    Article  CAS  Google Scholar 

  11. T. Maunula, M. Tuikka, and T. Wolff. The reactions and role of ammonia slip catalysts in modern urea-SCR systems. Emiss. Control Sci. Technol., 2020, 6, 390-401. https://doi.org/10.1007/s40825-020-00171-1.

    Article  CAS  Google Scholar 

  12. Z. Li, C. Wang, J. Qiu, Y. Ma, C. Wang, X. Sun, K. Li, P. Ning, and F. Wang. Advances in selective catalytic oxidation of ammonia (NH3–SCO): A review of catalyst structure-activity relationship and design principles. Chin. Chem. Lett., 2023, 108432. https://doi.org/10.1016/j.cclet.2023.108432

    Article  CAS  Google Scholar 

  13. S. Shrestha, M. P. Harold, and K. Kamasamudram. Experimental and modeling study of selective ammonia oxidation on multi-functional washcoated monolith catalysts. Chem. Eng. J., 2015, 278, 24-35. https://doi.org/10.1016/j.cej.2015.01.015

    Article  CAS  Google Scholar 

  14. R. S. Ghosh, T. T. Le, T. Terlier, J. D. Rimer, M. P. Harold, and D. Wang. Enhanced selective oxidation of ammonia in a Pt/Al2O3@Cu/ZSM-5 core-shell catalyst. ACS Catal., 2020, 10, 3604-3617. https://doi.org/10.1021/acscatal.9b04288

    Article  CAS  Google Scholar 

  15. A. Scheuer, W. Hauptmann, A. Drochner, J. Gieshoff, H. Vogel, and M. Votsmeier. Dual layer automotive ammonia oxidation catalysts: Experiments and computer simulation. Appl. Catal., B, 2012, 111/112, 445-455. https://doi.org/10.1016/j.apcatb.2011.10.032

    Article  CAS  Google Scholar 

  16. S. Shrestha, M. P. Harold, K. Kamasamudram, and A. Yezerets. Selective oxidation of ammonia on mixed and dual-layer Fe-ZSM-5+Pt/Al2O3 monolithic catalysts. Catal. Today, 2014, 231, 105-115. https://doi.org/10.1016/j.cattod.2014.01.024.

    Article  CAS  Google Scholar 

  17. P. S. Dhillon, M. P. Harold, D. Wang, A. Kumar, and S. Y. Joshi. Modeling and analysis of transport and reaction in washcoated monoliths: Cu-SSZ-13 SCR and dual-layer Cu-SSZ-13+Pt/Al2O3 ASC. React. Chem. Eng, 2019, 4, 1103-1115. https://doi.org/10.1039/c8re00325d

    Article  CAS  Google Scholar 

  18. R. S. Ghosh, M. P. Harold, and D. Wang. Selective oxidation of NH3 in a Pt/Al2O3@Cu/ZSM-5 core-shell catalyst: Modeling and optimization. Chem. Eng. J., 2021, 418, 129065. https://doi.org/10.1016/j.cej.2021.129065

    Article  CAS  Google Scholar 

  19. Q. An, G. Xu, J. Liu, Y. Wang, Y. Yu, and H. He. Designing a bifunctional Pt/Cu-SSZ-13 catalyst for ammonia-selective catalytic oxidation with superior selectivity. ACS Catal., 2023, 13, 6851-6861. https://doi.org/10.1021/acscatal.3c01322

    Article  CAS  Google Scholar 

  20. Y. Yu, M. Geng, D. Wei, and C. He. Promoting the effects of CuSO4 on N2 selectivity in selective catalytic oxidation of ammonia over Pt/TiO2 catalysts. New J. Chem., 2022, 46, 20777-20785. https://doi.org/10.1039/d2nj04037a

    Article  CAS  Google Scholar 

  21. F. Wang, Y. Zhu, Z. Li, Y. Shan, W. Shan, X. Shi, Y. Yu, C. Zhang, K. Li, P. Ning, Y. Zhang, and H. He. Promoting effect of acid sites on NH3–SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst. Catal. Today, 2021, 376, 311-317. https://doi.org/10.1016/j.cattod.2020.06.039

    Article  CAS  Google Scholar 

  22. J. J. Ostermaier, J. R. Katzer, and W. H. Manogue. Platinum catalyst deactivation in low-temperature ammonia oxidation reactions. I. Oxidation of ammonia by molecular oxygen. J. Catal., 1976, 41, 277-292. https://doi.org/10.1016/0021-9517(76)90343-2

    Article  CAS  Google Scholar 

  23. D. P. Sobczyk, E. J. M. Hensen, A. M. De Jong, and R. A. Van Santen. Low-temperature ammonia oxidation over Pt/y-alumina: the influence of the alumina support. Top. Catal., 2003, 23, 109-117. https://doi.org/10.1023/A:1024876421421

    Article  CAS  Google Scholar 

  24. L. S. Kibis, D. A. Svintsitskiy, A. I. Stadnichenko, E. M. Slavinskaya, A. V. Romanenko, E. A. Fedorova, O. A. Stonkus, V. A. Svetlichnyi, E. D. Fakhrutdinova, M. Vorokhta, B. Šmíd, D. E. Doronkin, V. Marchuk, J. D. Grunwaldt, and A. I. Boronin. In situ probing of Pt/TiO2 activity in low-temperature ammonia oxidation. Catal. Sci. Technol., 2021, 11, 250-263. https://doi.org/10.1039/d0cy01533d

    Article  CAS  Google Scholar 

  25. E. M. Slavinskaya, L. S. Kibis, O. A. Stonkus, D. A. Svintsitskiy, A. I. Stadnichenko, E. A. Fedorova, A. V. Romanenko, V. Marchuk, D. E. Doronkin, and A. I. Boronin. The effects of platinum dispersion and Pt state on catalytic properties of Pt/Al2O3 in NH3 oxidation. ChemCatChem, 2020, 13, 313-327. https://doi.org/10.1002/cctc.202001320

    Article  CAS  Google Scholar 

  26. J. J. Ostermaier, J. R. Katzer, and W. H. Manogue. Crystallite size effects in the low-temperature oxidation of ammonia over supported platinum. J. Catal., 1974, 33, 457-473. https://doi.org/10.1016/0021-9517(74)90292-9

    Article  CAS  Google Scholar 

  27. H. Huang, D. Y. C. Leung, and D. Ye. Effect of reduction treatment on structural properties of TiO2 supported Pt nanoparticles and their catalytic activity for formaldehyde oxidation. J. Mater. Chem., 2011, 21, 9647-9652. https://doi.org/10.1039/c1jm10413f

    Article  CAS  Google Scholar 

  28. L.Y. Lin, S. Kavadiya, X. He, W. N. Wang, B. B. Karakocak, Y. C. Lin, M. Y. Berezin, and P. Biswas. Engineering stable Pt nanoparticles and oxygen vacancies on defective TiO2 via introducing strong electronic metal-support interaction for efficient CO2 photoreduction. Chem. Eng. J., 2020, 389, 123450. https://doi.org/10.1016/j.cej.2019.123450

    Article  CAS  Google Scholar 

  29. S. J. Tauster, S. C. Fung, and R. L. Garten. Strong metal-support interactions. Group 8 noble metals supported on TiO2. J. Am. Chem. Soc., 1978, 100, 170-175. https://doi.org/10.1021/ja00469a029

    Article  CAS  Google Scholar 

  30. Z. Rui, L. Chen, H. Chen, and H. Ji. Strong metal-support interaction in Pt/TiO2 induced by mild HCHO and NaBH4 solution reduction and its effect on catalytic toluene combustion. Ind. Eng. Chem. Res., 2014, 53, 15879-15888. https://doi.org/10.1021/ie5029107

    Article  CAS  Google Scholar 

  31. Y. Yu, D. Wei, Z. Tong, J. Wang, J. Chen, and C. He. Rationally engineered ReOx–CuSO4/TiO2 catalyst with superior NH3-SCO efficiency and remarkably boosted SO2 tolerance: Synergy of acid sites and surface adsorbed oxygen. Chem. Eng. J., 2022, 442, 136356. https://doi.org/10.1016/j.cej.2022.136356

    Article  CAS  Google Scholar 

  32. H. Kamata, K. Takahashi, and C. U. I. Odenbrand. The role of K2O in the selective reduction of NO with NH3 over a V2O5(WO3)/TiO2 commercial selective catalytic reduction catalyst. J. Mol. Catal. A, 1999, 139, 189-198. https://doi.org/10.1016/S1381-1169(98)00177-0

    Article  CAS  Google Scholar 

  33. L. Chen, D. Weng, J. Wang, D. Weng, and L. Cao. Low-temperature activity and mechanism of WO3-modified CeO2–TiO2 catalyst under NH3–NO/NO2 SCR conditions. Chin. J. Catal., 2018, 39, 1804-1813. https://doi.org/10.1016/S1872-2067(18)63129-8

    Article  CAS  Google Scholar 

  34. F. Giraud, C. Geantet, N. Guilhaume, S. Loridant, S. Gros, L. Porcheron, M. Kanniche, and D. Bianchi. Experimental microkinetic approach of De–NOx by NH3 on V2O5/WO3/TiO2 catalysts. 2. Impact of superficial sulfate and/or VxOy groups on the heats of adsorption of adsorbed NH3 species. J. Phys. Chem. C, 2014, 118, 15677-15692. https://doi.org/10.1021/jp502583k

    Article  CAS  Google Scholar 

  35. Powder Diffraction File. PDF-2. International Centre for Diffraction Data. USA, 2009.

  36. J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy. Minnesota, USA: Perkin-Elmer, 1992.

  37. A. Stadnichenko, D. Svintsitskiy, L. Kibis, E. Fedorova, O. Stonkus, E. Slavinskaya, I. Lapin, E. Fakhrutdinova, V. Svetlichnyi, A. Romanenko, D. Doronkin, V. Marchuk, J. D. Grunwaldt, and A. Boronin. Influence of titania synthesized by pulsed laser ablation on the state of platinum during ammonia oxidation. Appl. Sci., 2020, 10, 1-25. https://doi.org/10.3390/app10144699

    Article  CAS  Google Scholar 

  38. M. Peuckert and H. P. Bonzel. Characterization of oxidized platinum surfaces by X-ray photoelectron spectroscopy. Surf. Sci., 1984, 145, 239-259. https://doi.org/10.1016/0039-6028(84)90778-7

    Article  ADS  CAS  Google Scholar 

  39. A. V. Kalinkin, M. Y. Smirnov, A. I. Nizovskii, and V. I. Bukhtiyarov. X-ray photoelectron spectra of platinum compounds excited with monochromatic AgLα irradiation. J. Electron Spectrosc. Relat. Phenom., 2010, 177, 15-18. https://doi.org/10.1016/j.elspec.2009.09.007

    Article  CAS  Google Scholar 

  40. M. G. Mason. Electronic structure of supported small metal clusters. Phys. Rev. B, 1983, 27, 748-762. https://doi.org/10.1103/PhysRevB.27.748

    Article  ADS  CAS  Google Scholar 

  41. T. Huizinga, H. F. J. van′T Blik, J. C. Vis, and R. Prins. XPS investigations of Pt and Rh supported on γ-Al2O3 and TiO2. Surf. Sci., 1983, 135, 580-596. https://doi.org/10.1016/0039-6028(83)90243-1

    Article  ADS  CAS  Google Scholar 

  42. M. Y. Smirnov, A. V. Kalinkin, and V. I. Bukhtiyarov. X-ray photoelectron spectroscopic study of the interaction of supported metal catalysts with NOx. J. Struct. Chem., 2007, 48, 1053-1060. https://doi.org/10.1007/s10947-007-0170-1

    Article  CAS  Google Scholar 

  43. T. Ioannides and X. E. Verykios. Charge transfer in metal catalysts supported on doped TiO2: A theoretical approach based on metal–semiconductor contact theory. J. Catal., 1996, 161, 560-569. https://doi.org/10.1006/jcat.1996.0218

    Article  CAS  Google Scholar 

  44. A. Lewera, L. Timperman, A. Roguska, and N. Alonso-Vante. Metal-support interactions between nanosized Pt and metal oxides (WO3 and TiO2) studied using X-ray photoelectron spectroscopy. J. Phys. Chem. C, 2011, 115, 20153-20159. https://doi.org/10.1021/jp2068446

    Article  CAS  Google Scholar 

  45. L. Nie, P. Zhou, J. Yu, and M. Jaroniec. Deactivation and regeneration of Pt/TiO2 nanosheet-type catalysts with exposed (001) facets for room temperature oxidation of formaldehyde. J. Mol. Catal. A, 2014, 390, 7-13. https://doi.org/10.1016/j.molcata.2014.02.033

    Article  CAS  Google Scholar 

  46. C. J. Pan, M. C. Tsai, W. N. Su, J. Rick, N. G. Akalework, A. K. Agegnehu, S. Y. Cheng, and B. J. Hwang. Tuning/exploiting strong metal-support interaction (SMSI) in heterogeneous catalysis. J. Taiwan Inst. Chem. Eng., 74, 2017, 154-186. https://doi.org/10.1016/j.jtice.2017.02.012

    Article  CAS  Google Scholar 

  47. X. Y. Shi, W. Zhang, C. Zhang, W. T. Zheng, H. Chen, and J. G. Qi. Real-space observation of strong metal-support interaction: State-of-the-art and what′s the next. J. Microsc., 2016, 262, 203-215. https://doi.org/10.1111/jmi.12366

    Article  CAS  PubMed  Google Scholar 

  48. L. K. Ono, J. R. Croy, H. Heinrich, and B. Roldan Cuenya. Oxygen chemisorption, formation, and thermal stability of Pt oxides on Pt nanoparticles supported on SiO2/Si(001): Size effects. J. Phys. Chem. C, 2011, 115(34), 16856-16866. https://doi.org/10.1021/jp204743q

    Article  CAS  Google Scholar 

  49. D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, and A. I. Boronin. Highly oxidized platinum nanoparticles prepared through radio-frequency sputtering: Thermal stability and reaction probability towards CO. ChemPhysChem, 2015, 16, 3318-3324. https://doi.org/10.1002/cphc.201500546

    Article  CAS  PubMed  Google Scholar 

  50. C. Wang and C. Yeh. Effects of particle size on the progressive oxidation of nanometer platinum by dioxygen. J. Catal., 1998, 178, 450-456. https://doi.org/10.1006/jcat.1998.2121

    Article  CAS  Google Scholar 

  51. A. Y. Stakheev, D. A. Bokarev, I. P. Prosvirin, and V. I. Bukhtiyarov. Particle-size effect in catalytic oxidation over Pt nanoparticles. In: Advanced Nanomaterials for Catalysis and Energy. Elsevier, 2019, 295-320. https://doi.org/10.1016/b978-0-12-814807-5.00008-5

    Chapter  Google Scholar 

  52. I. Bertóti, M. Mohai, J. L. Sullivan, and S. O. Saied. Surface characterisation of plasma-nitrided titanium: An XPS study. Appl. Surf. Sci., 1995, 84, 357-371. https://doi.org/10.1016/0169-4332(94)00545-1

    Article  ADS  Google Scholar 

  53. K. Siuzdak, M. Sawczak, M. Klein, G. Nowaczyk, S. Jurga, and A. Cenian. Preparation of platinum modified titanium dioxide nanoparticles with the use of laser ablation in water. Phys. Chem. Chem. Phys., 2014, 16, 15199-15206. https://doi.org/10.1039/C4CP01923G

    Article  CAS  PubMed  Google Scholar 

  54. P. Berteau and B. Delmon. Modified aluminas: Relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD. Catal. Today, 1989, 5, 121-137. https://doi.org/10.1016/0920-5861(89)80020-3

    Article  CAS  Google Scholar 

  55. A. Scheuer, M. Votsmeier, A. Schuler, J. Gieshoff, A. Drochner, and H. Vogel. NH3-slip catalysts: experiments versus mechanistic modelling. Top. Catal., 2009, 52, 1847-1851. https://doi.org/10.1007/s11244-009-9351-9

    Article  CAS  Google Scholar 

  56. M. Kong, Q. Liu, L. Jiang, W. Tong, J. Yang, S. Ren, J. Li, and Y. Tian. K+ deactivation of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO with NH3: Effect of vanadium content. Chem. Eng. J., 2019, 370, 518-526. https://doi.org/10.1016/j.cej.2019.03.156

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 23-23-00322, 12.01.2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Kibis.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 120714.https://doi.org/10.26902/JSC_id120714

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibis, L.S., Svintsitskiy, D.A., Ovsyuk, I.Y. et al. Modification of Physicochemical Properties of Platinum-Titanium Catalysts for Ammonia Slip Oxidation. J Struct Chem 65, 125–137 (2024). https://doi.org/10.1134/S0022476624010128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010128

Keywords

Navigation