Skip to main content
Log in

Superstoichiometric Oxygen and Structural Instability of Ferrite CaBaFe4O7: ab Initio Approach

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The pseudo-potential PAW method of the density functional theory is employed to study the localization of superstoichiometric oxygen in ferrite CaBaFe4O7 with the orthorhombic swedenborgite structure. The geometric characteristics of oxygen defects are determined by the crystal lattice relaxation procedure. It is shown that the formation of defects in calcium and barium coordination are energetically unfavorable. Oxygen intercalation into structural trigonal iron-oxygen and Kagomé layers is more favorable. In these layers, two edge-sharing Fe2O5 bipyramides are formed instead of FeO4 tetrahedra connected via one oxygen atom. The structural instability of ferrite CaBaFe4O7 is shown to be caused by the population of anti-bonding 2O states during oxygen intercalation. The asymmetric location of the intercalated oxygen ion relative to the neighboring iron ions promotes the appearance of local electric polarization, which can induce ferroelectric effects in the presence of ferromagnetic order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. N. Hollmann, M. Valldor, H. Wu, Z. Hu, N. Qureshi, T. Willers, Y-Y. Chin, J. C. Cesar, A. Tanaka, N. B. Brookes, and L. H. Tjeng. Orbital occupation and magnetism of tetrahedrally coordinated iron in CaBaFe4O7. Phys. Rev., 2011, 83, 180405. https://doi.org/10.1103/physrevb.83.180405

    Article  ADS  Google Scholar 

  2. V. Kocsis, Y. Tokunaga, S. Bordacs, M. Kriener, A. Puri, U. Zeitler, Y. Taguchi, Y. Tokura, and I. Kézsmárki. Magnetoelectric effect and magnetic phase diagram of a polar ferrimagnet CaBaFe4O7. Phys. Rev. B, 2016, 93, 014444.

    Article  ADS  Google Scholar 

  3. S. Chatterjee and T. Saha-Dasgupta. Electronic and magnetic structure of the mixed-valence cobaltite CaBaCo4O7. Phys. Rev. B, 2011, 84, 85116. https://doi.org/10.1103/PhysRevB.84.085116

    Article  ADS  Google Scholar 

  4. Yu. Shukai, C. Dhanasekhar, V. Adyam, S. Deckoff-Jones, M. K. L. Man, J. Madéo, E. L. Wong, T. Harada, M. B. M. Krishna, K. M. Dani, and D. Talbayev. Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo4O7. Phys. Rev. B., 2017, 96, 094421. https://doi.org/10.1103/PhysRevB.96.094421

    Article  ADS  CAS  Google Scholar 

  5. M. Soda, Y. Yasui, T. Moyoshi, M. Sato, N. Igawa, and K. Kakurai. Magnetic structure of YBaCo4O7 with kagome and triangular lattices. J. Phys. Soc. Jpn., 2006, 75, 054707. https://

    Article  ADS  Google Scholar 

  6. M. Seikh, V. Caignaert, V. Pralong, and B. Raveau. High sensitivity of magnetism of the «114» ferrimagnet CaBaCo4O7 to stoichiometry deviation. J. Phys. Chem. Solids, 2014, 75, 79. https://doi.org/10.1016/j.jpcs.2013.08.013

    Article  ADS  CAS  Google Scholar 

  7. G. Kresse, M. Marsman, and J. Furthmuller. Vienna ab-initio simulation package. VASP the guide. Vienna, Austria: University of Vienna, 2018.

  8. J. P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  CAS  PubMed  Google Scholar 

  9. B. Raveau, V. Caignaert, V. Pralong, D. Pelloquin, and A. Maignan. A series of novel mixed valent ferrimagnetic oxides with a TC up to 270 K: Ca1−xYxBaFe4O7. Chem. Mater., 2008, 20, 6295. https://doi.org/10.1021/cm8018692.

    Article  CAS  Google Scholar 

  10. S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U Study. Phys. Rev. B, 1998, 57, 1505. https://doi.org/10.1103/PhysRevB.57.1505

    Article  ADS  CAS  Google Scholar 

  11. U. D. Wdowik, P. Piekarz, K. Parlinski, A. M. Oleś, and J. Korecki. Strong effects of cation vacancies on the electronic and dynamical properties of FeO. Phys. Rev. B, 2013, 87, 121106. https://doi.org/10.1103/PhysRevB.87.121106

    Article  ADS  Google Scholar 

  12. G. Henkelman, A. Arnaldsson, and H. Jónsson. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006, 36, 354. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  13. O. Chmaissem, H. Zheng, A. Huq, P. W. Stephens, and J. F. Mitchell. Formation of Co3+ octahedra and tetrahedra in YBaCo4O8.1. J. Solid State Chem., 2008, 181, 664. https://doi.org/10.1016/j.jssc.2007.12.016

    Article  ADS  CAS  Google Scholar 

  14. D. I. Turkin, A. M. Shalamova, A. Yu. Suntsov, and V. L. Kozhevnikov. Oxygen intake and giant thermo-chemical expansion of ceramics in the non-stoichiometric CaBaFe4O7+δ ferrite. Mater. Lett., 2023, 337, 133986. https://doi.org/10.1016/j.matlet.2023.133986

    Article  CAS  Google Scholar 

  15. V. P. Zhukov and I. R. Shein. Structure and thermodynamic characteristics of impurity centers in lithium-doped cadmium oxide: An ab initio paw-study. J. Struct. Chem., 2018, 59(2), 253-260. https://doi.org/10.1134/s0022476618020014

    Article  CAS  Google Scholar 

  16. V. P. Zhukov and I. R. Shein. Ab initio thermodynamic characteristics of the formation of oxygen vacancies, and boron, carbon, and nitrogen impurity centers in anatase. Phys. Solid State, 2018, 60(1), 37-48. https://doi.org/10.1134/s1063783418010304

    Article  ADS  CAS  Google Scholar 

  17. M. Valldor. Syntheses and structures of compounds with YBaCo4O7-type structure. Solid State Sci., 2004, 6, 251. https://doi.org/10.1016/j.solidstatesciences.2004.01.004

    Article  ADS  CAS  Google Scholar 

  18. S. Maintz, V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski. Analytic projection from plane-wave and PAW wave functions and application to chemical-bonding analysis in solids. J. Comput. Chem., 2013, 34, 2557. https://doi.org/10.1002/jcc.23424

    Article  CAS  PubMed  Google Scholar 

  19. S. Maintz, V. L. Deringer, A. L. Tchougreeff, and R. Dronskowski. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem., 2016, 37, 1030. https://doi.org/10.1002/jcc.24300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (grant No. 22-19-00129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Suntsov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 120093.https://doi.org/10.26902/JSC_id120093

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suntsov, A.Y., Zhukov, V.P. & Kozhevnikov, V.L. Superstoichiometric Oxygen and Structural Instability of Ferrite CaBaFe4O7: ab Initio Approach. J Struct Chem 65, 36–47 (2024). https://doi.org/10.1134/S0022476624010049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010049

Keywords

Navigation