Skip to main content
Log in

Whether Molecular Dynamics Methods Can Explain Different Activities of Stereoisomers Against Respiratory Syncytial Virus or Not?

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The antiviral activity of monoterpene-aryl coumarin conjugates depends on the absolute configuration of the monoterpene moiety, which seems to be due to different arrangements of compounds at the binding site of the F-protein of respiratory syncytial virus - the supposed target for these compounds. Molecular dynamics and metadynamics methods make it possible to estimate the difference in the nature of the interaction between stereoisomers and key amino acid residues of the binding site and to explain their different antiviral activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. ΔGMM–GBSA is the free Gibbs energy. GBSA is the generalized Born model (GB) augmented with the surface area available for a hydrophobic solvent (SA).

  2. D is the aspartic acid, F-protein is glycoprotein, surface RSV protein, F is phenylalanine, L is leucine, Q is glutamine.

REFERENCES

  1. Y. Li, R. M. Reeves, X. Wang, Q. Bassat, W. A. Brooks, C. Cohen, D. P. Moore, M. Nunes, B. Rath, H. Campbell, and H. Nair. Global patterns in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and metapneumovirus: A systematic analysis. Lancet Global Health, 2019, 7(8), e1031-e1045. https://doi.org/10.1016/s2214-109x(19)30264-5

    Article  PubMed  Google Scholar 

  2. V. Z. Krivitskaya. Respiratory syncytial virus infection. Pathogenesis peculiarities, prevention and treatment strategies. Curr. Pediatr., 2013, 12(2), 35. https://doi.org/10.15690/vsp.v12i2.618

    Article  Google Scholar 

  3. T. Carvalho. mRNA vaccine effective against RSV respiratory disease. Nat. Med., 2023, 29(4), 755/756. https://doi.org/10.1038/d41591-023-00017-7

    Article  CAS  PubMed  Google Scholar 

  4. S. Vendeville, A. Tahri, L. Hu, S. Demin, L. Cooymans, A. Vos, L. Kwanten, J. Van den Berg, M. B. Battles, J. S. McLellan, A. Koul, P. Raboisson, D. Roymans, and T. H. M. Jonckers. Discovery of 3-({5-chloro-1-[3-(methylsulfonyl)propyl]-1H-indol-2-yl}methyl)-1-(2,2,2-trifluoroethyl)-1,3-dihydro-2H-imidazo[4,5-c]pyridin-2-one (JNJ-53718678), a potent and orally bioavailable fusion inhibitor of respiratory syncytial virus. J. Med. Chem., 2020, 63(15), 8046-8058. https://doi.org/10.1021/acs.jmedchem.0c00226

    Article  CAS  PubMed  Google Scholar 

  5. G. S. Cockerill, R. M. Angell, A. Bedernjak, I. Chuckowree, I. Fraser, J. Gascon-Simorte, M. S. A. Gilman, J. A. D. Good, R. Harland, S. M. Johnson, J. H. Ludes-Meyers, E. Littler, J. Lumley, G. Lunn, N. Mathews, J. S. McLellan, M. Paradowski, M. E. Peeples, C. Scott, D. Tait, G. Taylor, M. Thom, E. Thomas, C. Villalonga Barber, S. E. Ward, D. Watterson, G. Williams, P. Young, and K. Powell. Discovery of sisunatovir (RV521), an inhibitor of respiratory syncytial virus fusion. J. Med. Chem., 2021, 64(7), 3658-3676. https://doi.org/10.1021/acs.jmedchem.0c01882

    Article  CAS  PubMed  Google Scholar 

  6. A. S. Sokolova, O. I. Yarovaya, L. V. Kuzminykh, A. A. Shtro, A. M. Klabukov, A. V. Galochkina, Y. V. Nikolaeva, G. D. Petukhova, S. S. Borisevich, E. M. Khamitov, and N. F. Salakhutdinov. Discovery of N-containing (-)-borneol esters as respiratory syncytial virus fusion inhibitors. Pharmaceuticals, 2022, 15(11), 1390. https://doi.org/10.3390/ph15111390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. G. S. Cockerill, J. A. D. Good, and N. Mathews. State of the art in respiratory syncytial virus drug discovery and development. J. Med. Chem., 2019, 62(7), 3206-3227. https://doi.org/10.1021/acs.jmedchem.8b01361

    Article  CAS  PubMed  Google Scholar 

  8. M. H. J. Rhodin, N. V. McAllister, J. Castillo, S. L. Noton, R. Fearns, I. J. Kim, J. Yu, T. P. Blaisdell, J. Panarese, B. C. Shook, Y. S. Or, B. Goodwin, and K. Lin. EDP- novel nucleoprotein inhibitor of respiratory syncytial virus, demonstrates potent antiviral activities in vitro and in a non-human primate model. PLOS Pathog., 2021, 17(3), e1009428. https://doi.org/10.1371/journal.ppat.1009428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. T. M. Khomenko, A. A. Shtro, A. V. Galochkina, Y. V. Nikolaeva, G. D. Petukhova, S. S. Borisevich, D. V. Korchagina, K. P. Volcho, and N. F. Salakhutdinov. Monoterpene-containing substituted coumarins as inhibitors of respiratory syncytial virus (RSV) replication. Molecules, 2021, 26(24), 7493. https://doi.org/10.3390/molecules26247493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. G. Nemolochnova, A. D. Rogachev, O. P. Salnikova, T. M. Khomenko, K. P. Volcho, O. I. Yarovaya, A. V. Fatianova, A. G. Pokrovsky, and N. F. Salakhutdinov. Stability study, quantification method and pharmacokinetics investigation of a coumarin–monoterpene conjugate possessing antiviral properties against respiratory syncytial virus. Pharmaceuticals, 2022, 15(9), 1158. https://doi.org/10.3390/ph15091158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. T. M. Khomenko, A. A. Shtro, A. V. Galochkina, Y. V. Nikolaeva, A. V. Garshinina, S. S. Borisevich, D. V. Korchagina, K. P. Volcho, and N. F. Salakhutdinov. New inhibitors of respiratory syncytial virus (RSV) replication based on monoterpene-substituted arylcoumarins. Molecules, 2023, 28(6), 2673. https://doi.org/10.3390/molecules28062673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. A. Shtro, A. M. Klabukov, A. V. Garshinina, A. V. Galochkina, Y. V. Nikolaeva, T. M. Khomenko, D. E. Bobkov, A. A. Lozhkov, K. V. Sivak, K. S. Yakovlev, A. B. Komissarov, S. S. Borisevich, K. P. Volcho, and N. F. Salakhutdinov. Identification and study of the action mechanism of small compound that inhibits replication of respiratory syncytial virus. Int. J. Mol. Sci., 2023, 24(16), 12933. https://doi.org/10.3390/ijms241612933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. B. Battles, J. P. Langedijk, P. Furmanova-Hollenstein, S. Chaiwatpongsakorn, H. M. Costello, L. Kwanten, L. Vranckx, P. Vink, S. Jaensch, T. H. M. Jonckers, A. Koul, E. Arnoult, M. E. Peeples, D. Roymans, and J. S. McLellan. Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nat. Chem. Biol., 2016, 12(2), 87-93. https://doi.org/10.1038/nchembio.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. J. S. McLellan, M. Chen, M. G. Joyce, M. Sastry, G. B. E. Stewart-Jones, Y. Yang, B. Zhang, L. Chen, S. Srivatsan, A. Zheng, T. Zhou, K. W. Graepel, A. Kumar, S. Moin, J. C. Boyington, G.-Y. Chuang, C. Soto, U. Baxa, A. Q. Bakker, H. Spits, T. Beaumont, Z. Zheng, N. Xia, S.-Y. Ko, J.-P. Todd, S. Rao, B. S. Graham, and P. D. Kwong. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science, 2013, 342(6158), 592-598. https://doi.org/10.1126/science.1243283

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Plazinska, M. Kolinski, I. W. Wainer, and K. Jozwiak. Molecular interactions between fenoterol stereoisomers and derivatives and the β2-adrenergic receptor binding site studied by docking and molecular dynamics simulations. J. Mol. Model., 2013, 19(11), 4919-4930. https://doi.org/10.1007/s00894-013-1981-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. V. Sundaresan and R. Abrol. Towards a general model for protein–substrate stereoselectivity. Protein Sci., 2002, 11(6), 1330-1339. https://doi.org/10.1110/ps.3280102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. H. M. Berman. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. I. Rossey, C.-L. Hsieh, K. Sedeyn, M. Ballegeer, B. Schepens, J. S. McLellan, and X. Saelens. A vulnerable, membrane-proximal site in human respiratory syncytial virus F revealed by a prefusion-specific single-domain antibody. J. Virol., 2021, 95(11). https://doi.org/10.1128/jvi.02279-20

    Article  PubMed  PubMed Central  Google Scholar 

  19. L. A. Baltina, H.-C. Lai, Y.-C. Liu, S.-H. Huang, M.-J. Hour, L. A. Baltina, T. R. Nugumanov, S. S. Borisevich, L. M. Khalilov, S. F. Petrova, S. L. Khursan, and C.-W. Lin. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg. Med. Chem., 2021, 41, 116204. https://doi.org/10.1016/j.bmc.2021.116204

    Article  CAS  Google Scholar 

  20. R. C. Aloia, F. C. Jensen, C. C. Curtain, P. W. Mobley, and L. M. Gordon. Lipid composition and fluidity of the human immunodeficiency virus. Proc. Natl. Acad. Sci., 1988, 85(3), 900-904. https://doi.org/10.1073/pnas.85.3.900

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. O. Satoh, H. Imai, T. Yoneyama, T. Miyamura, H. Utsumi, K. Inoue, and M. Umeda. Membrane structure of the hepatitis B virus surface antigen particle. J. Biochem., 2000, 127(4), 543-550. https://doi.org/10.1093/oxfordjournals.jbchem.a022639

    Article  CAS  PubMed  Google Scholar 

  22. C. Lu, C. Wu, D. Ghoreishi, W. Chen, L. Wang, W. Damm, G. A. Ross, M. K. Dahlgren, E. Russell, C. D. Von Bargen, R. Abel, R. A. Friesner, and E. D. Harder. OPLS4: Improving force field accuracy on challenging regimes of chemical space. J. Chem. Theory Comput., 2021, 17(7), 4291-4300. https://doi.org/10.1021/acs.jctc.1c00302

    Article  CAS  PubMed  Google Scholar 

  23. K. J. Bowers, F. D. Sacerdoti, J. K. Salmon, Y. Shan, D. E. Shaw, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossvary, and M. A. Moraes. Molecular dynamics - Scalable algorithms for molecular dynamics simulations on commodity clusters. In: SC ′06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, Tampa, Florida, USA, Nov 11-17, 2006. New York, USA: ACM Press, 2006, 84. https://doi.org/10.1145/1188455.1188544

    Book  Google Scholar 

  24. C. Yung-Chi and W. H. Prusoff. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol., 1973, 22(23), 3099-3108. https://doi.org/10.1016/0006-2952(73)90196-2

    Article  Google Scholar 

Download references

Funding

The authors acknowledge the support of the Russian Science Foundation (grant No. 21-13-00026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Borisevich.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 120491.https://doi.org/10.26902/JSC_id120491

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisevich, S.S., Volcho, K.P. & Salakhutdinov, N.F. Whether Molecular Dynamics Methods Can Explain Different Activities of Stereoisomers Against Respiratory Syncytial Virus or Not?. J Struct Chem 65, 82–91 (2024). https://doi.org/10.1134/S0022476624010086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010086

Keywords

Navigation