Skip to main content
Log in

Mutual Adjacency of Components Molecules in Aqueous TBA and TMAO Solutions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A quantitative characteristic of associations in solutions can be determined by calculating the fraction of molecules of each component containing a specified number of molecules of the same or another component in their immediate environment. In our previous work [1], we considered the proximity only between solute molecules. The analysis of calculated characteristics revealed features of structural changes exhibited by aqueous tert-butyl alcohol (TBA) and trimethylamine oxide (TMAO) solutions upon the concentration increase. In the present study, we apply this approach to other types of neighborhoods and consider water molecules surrounded by solute molecules and solute molecules surrounded by water molecules. The obtained data provide additional important information on the structural features of the studied solutions. It is shown that the TBA solutions have a heterogeneous structure manifested both as the presence of close aggregates of alcohol molecules and as the preservation of water regions composed of water molecule containing only water molecules in their environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

REFERENCES

  1. V. A. Nichiporenko, E. D. Kadtsyn, and N. N. Medvedev. New approach to the study of association in solutions. J. Struct. Chem., 2023, 64(8), 1380-1390. https://doi.org/10.1134/s0022476623080036

    Article  CAS  Google Scholar 

  2. J. Cerar, A. Jamnik, I. Pethes, L. Temleitner, L. Pusztai, and M. Tomšič. Structural, rheological and dynamic aspects of hydrogen-bonding molecular liquids: Aqueous solutions of hydrotropic tert-butyl alcohol. J. Colloid Interface Sci., 2020, 560, 730-742. https://doi.org/10.1016/j.jcis.2019.10.094

    Article  ADS  CAS  PubMed  Google Scholar 

  3. S. Banerjee and B. Bagchi. Stability of fluctuating and transient aggregates of amphiphilic solutes in aqueous binary mixtures: Studies of dimethylsulfoxide, ethanol, and tert-butyl alcohol. J. Chem. Phys., 2013, 139(16). https://doi.org/10.1063/1.4824890

    Article  PubMed  Google Scholar 

  4. J. Jadżyn and J. Świergiel. Mesoscopic clustering in butanol isomers. J. Mol. Liq., 2020, 314, 113652. https://doi.org/10.1016/j.molliq.2020.113652

    Article  CAS  Google Scholar 

  5. G. I. Egorov and D. M. Makarov. Densities and volume properties of (water+tert-butanol) over the temperature range of (274.15 to 348.15) K at pressure of 0.1 MPa. J. Chem. Thermodyn., 2011, 43(3), 430-441. https://doi.org/10.1016/j.jct.2010.10.018

    Article  CAS  Google Scholar 

  6. E. D. Kadtsyn, V. A. Nichiporenko, and N. N. Medvedev. Volumetric properties of solutions on the perspective of Voronoi tessellation. J. Mol. Liq., 2022, 349, 118173. https://doi.org/10.1016/j.molliq.2021.118173

    Article  CAS  Google Scholar 

  7. E. D. Kadtsyn, V. A. Nichiporenko, and N. N. Medvedev. Using Voronoi diagrams to interpret bulk properties of solutions. J. Struct. Chem., 2021, 62(1), 58-69. https://doi.org/10.1134/s0022476621010078

    Article  CAS  Google Scholar 

  8. G. Onori and A. Santucci. Dynamical and structural properties of water/alcohol mixtures. J. Mol. Liq., 1996, 69, 161-181. https://doi.org/10.1016/s0167-7322(96)90012-4

    Article  CAS  Google Scholar 

  9. K. Mizuno, Y. Kimura, H. Morichika, Y. Nishimura, S. Shimada, S. Maeda, S. Imafuji, and T. Ochi. Hydrophobic hydration of tert-butyl alcohol probed by NMR and IR. J. Mol. Liq., 2000, 85(1/2), 139-152. https://doi.org/10.1016/s0167-7322(99)00170-1

    Article  CAS  Google Scholar 

  10. D. S. Wilcox, B. M. Rankin, and D. Ben-Amotz. Distinguishing aggregation from random mixing in aqueous t-butyl alcohol solutions. Faraday Discuss., 2013, 167, 177. https://doi.org/10.1039/c3fd00086a

    Article  ADS  CAS  PubMed  Google Scholar 

  11. S. Kaur and H. K. Kashyap. Three-dimensional morphology and X-ray scattering structure of aqueous tert-butanol mixtures: A molecular dynamics study. J. Chem. Sci., 2017, 129(1), 103-116. https://doi.org/10.1007/s12039-016-1207-9

    Article  CAS  Google Scholar 

  12. A. V. Kustov and O. A. Antonova. Solvation of benzene and its simple mono derivatives in water-tertiary butanol mixtures. Thermochim. Acta, 2013, 565, 159-162. https://doi.org/10.1016/j.tca.2013.05.028

    Article  CAS  Google Scholar 

  13. D. Chandler. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437(7059), 640-647. https://doi.org/10.1038/nature04162

    Article  ADS  CAS  PubMed  Google Scholar 

  14. R. Sinibaldi, C. Casieri, S. Melchionna, G. Onori, A. L. Segre, S. Viel, L. Mannina, and F. De Luca. The role of water coordination in binary mixtures. A study of two model amphiphilic molecules in aqueous solutions by molecular dynamics and NMR. J. Phys. Chem. B, 2006, 110(17), 8885-8892. https://doi.org/10.1021/jp056897+

    Article  CAS  PubMed  Google Scholar 

  15. D. Subramanian, J. B. Klauda, J. Leys, and M. A. Anisimov. Thermodynamic anomalies and structural fluctuations in aqueous solutions of tertiary butyl alcohol. Vestn. S.-Peterb. Univ., Ser. 4: Fiz., Khim., 2013, (1), 139-153.

  16. P. H. Yancey, M. E. Clark, S. C. Hand, R. D. Bowlus, and G. N. Somero. Living with Water stress: Evolution of osmolyte systems. Science, 1982, 217(4566), 1214-1222. https://doi.org/10.1126/science.7112124

    Article  ADS  CAS  PubMed  Google Scholar 

  17. T.-Y. Lin and S. N. Timasheff. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry, 1994, 33(42), 12695-12701. https://doi.org/10.1021/bi00208a021

    Article  CAS  PubMed  Google Scholar 

  18. D. W. Bolen and G. D. Rose. Structure and energetics of the hydrogen-bonded backbone in protein folding. Annu. Rev. Biochem., 2008, 77(1), 339-362. https://doi.org/10.1146/annurev.biochem.77.061306.131357

    Article  CAS  PubMed  Google Scholar 

  19. D. R. Canchi, P. Jayasimha, D. C. Rau, G. I. Makhatadze, and A. E. Garcia. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces. J. Phys. Chem. B, 2012, 116(40), 12095-12104. https://doi.org/10.1021/jp304298c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. N. Smolin, V. P. Voloshin, A. V. Anikeenko, A. Geiger, R. Winter, and N. N. Medvedev. TMAO and urea in the hydration shell of the protein SNase. Phys. Chem. Chem. Phys., 2017, 19(9), 6345-6357. https://doi.org/10.1039/c6cp07903b

    Article  CAS  PubMed  Google Scholar 

  21. J. Hunger, N. Ottosson, K. Mazur, M. Bonn, and H. J. Bakker. Water-mediated interactions between trimethylamine-N-oxide and urea. Phys. Chem. Chem. Phys., 2015, 17(1), 298-306. https://doi.org/10.1039/c4cp02709d

    Article  CAS  PubMed  Google Scholar 

  22. D. M. Makarov, G. I. Egorov, and A. M. Kolker. Density and volumetric properties of aqueous solutions of trimethylamine N-oxide in the temperature range from (278.15 to 323.15) K and at pressures up to 100 MPa. J. Chem. Eng. Data, 2015, 60(5), 1291-1299. https://doi.org/10.1021/je500977g

    Article  CAS  Google Scholar 

  23. M. Freda, G. Onori, and A. Santucci. Hydrophobic hydration and hydrophobic interaction in aqueous solutions of tert-butyl alcohol and trimethylamine-N-oxide: A correlation with the effect of these two solutes on the micellization process. Phys. Chem. Chem. Phys., 2002, 4(20), 4979-4984. https://doi.org/10.1039/b203773d

    Article  CAS  Google Scholar 

  24. M. V. Fedotova, S. E. Kruchinin, and G. N. Chuev. Hydration structure of osmolyte TMAO: concentration/pressure-induced response. New J. Chem., 2017, 41(3), 1219-1228. https://doi.org/10.1039/c6nj03296f

    Article  CAS  Google Scholar 

  25. D. Bandyopadhyay, Y. Kamble, and N. Choudhury. How different are the characteristics of aqueous solutions of tert-butyl alcohol and trimethylamine-N-oxide? A molecular dynamics simulation study. J. Phys. Chem. B, 2018, 122(34), 8220-8232. https://doi.org/10.1021/acs.jpcb.8b02411

    Article  CAS  PubMed  Google Scholar 

  26. A. V. Anikeenko, E. D. Kadtsyn, and N. N. Medvedev. Statistical geometry characterization of global structure of TMAO and TBA aqueous solutions. J. Mol. Liq., 2017, 245, 35-41. https://doi.org/10.1016/j.molliq.2017.06.001

    Article  CAS  Google Scholar 

  27. E. D. Kadtsyn, A. V. Anikeenko, and N. N. Medvedev. Statistical geometry characterization of local structure of TMAO, TBA and urea aqueous solutions. J. Mol. Liq., 2019, 286, 110870. https://doi.org/10.1016/j.molliq.2019.04.147

    Article  CAS  Google Scholar 

  28. E. D. Kadtsyn, A. V. Anikeenko, and N. N. Medvedev. Structure of aqueous solutions of trimethylaminoxide, urea, and their mixture. J. Struct. Chem., 2018, 59(2), 347-354. https://doi.org/10.1134/s0022476618020130

    Article  CAS  Google Scholar 

  29. A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, and D. G. Kendall. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. West Sussex, England: John Wiley & Sons, 2000. https://doi.org/10.1002/9780470317013

    Book  Google Scholar 

  30. N. N. Medvedev. Metod Voronogo-Delone dlya nekristallicheskikh struktur (Voronoi-Delaunay Method for Non-Crystalline Structures). Novosibirsk, Russia: SB RAS, 2000. [In Russian]

  31. E. E. David and C. W. David. Voronoi polyhedra and solvent structure for aqueous solutions (III). J. Chem. Phys., 1982, 77(12), 6251-6254. https://doi.org/10.1063/1.443827

    Article  ADS  CAS  Google Scholar 

  32. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  33. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1/2, 19-25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  ADS  Google Scholar 

  34. G. Bussi, D. Donadio, and M. Parrinello. Canonical sampling through velocity rescaling. J. Chem. Phys., 2007, 126(1). https://doi.org/10.1063/1.2408420

    Article  PubMed  Google Scholar 

  35. M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys., 1981, 52(12), 7182-7190. https://doi.org/10.1063/1.328693

    Article  ADS  CAS  Google Scholar 

  36. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  37. C. Caleman, P. J. van Maaren, M. Hong, J. S. Hub, L. T. Costa, and D. van der Spoel. Force field benchmark of organic liquids: Density, enthalpy of vaporization, heat capacities, surface tension, isothermal compressibility, volumetric expansion coefficient, and dielectric constant. J. Chem. Theory Comput., 2012, 8(1), 61-74. https://doi.org/10.1021/ct200731v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. C. Hölzl, P. Kibies, S. Imoto, R. Frach, S. Suladze, R. Winter, D. Marx, D. Horinek, and S. M. Kast. Design principles for high–pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures. J. Chem. Phys., 2016, 144(14). https://doi.org/10.1063/1.4944991

    Article  PubMed  Google Scholar 

  39. J. L. F. Abascal and C. Vega. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys., 2005, 123(23). https://doi.org/10.1063/1.2121687

    Article  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 22-23-00620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Kadtsyn.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 120787.https://doi.org/10.26902/JSC_id120787

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichiporenko, V.A., Kadtsyn, E.D. & Medvedev, N.N. Mutual Adjacency of Components Molecules in Aqueous TBA and TMAO Solutions. J Struct Chem 65, 149–159 (2024). https://doi.org/10.1134/S0022476624010141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010141

Keywords

Navigation