Skip to main content
Log in

Serendipitous Synthesis of an Octahedral Ni(II) Complex: Single Crystal Structure, Hirshfeld Surface and Voids Analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

The title compound, C50H42N4NiO6P2·2(ClO4) was synthesized serendipitously by the reaction of Ni(ClO4)2∙6H2O with newly synthesized Schiff base ligand and PPh3 in MeOH and its molecular and crystal structures were determined by single crystal X-ray analysis. It belongs to triclinic system \(P\bar{1}\) space group with a = 10.7936(4) Å, b = 12.2926(4) Å, c = 19.6272(6) Å, α = 92.574(3)°, β = 95.527(3)°, γ = 102.898(4)°, Z = 2 and V = 2520.73(15) Å3. In the crystal structure, the intra- and intermolecular N–H⋯O hydrogen bonds link the uncoordinated perchlorate anions to the mother molecule. A weak C–H⋯π interaction is also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H…H (43.9%), H…O/O…H (30.9%) and H…C/C…H (18.5 %) interactions. Hydrogen bonding and Van der Waals interactions are the dominant interactions in the crystal packing. Analysis of crystal voids showed that there is not any large cavity in the crystal packing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. Y.-X. Feng, S.-Z. Bai, and L.-W. Xue. Synthesis, crystal structure and antimicrobial activity of cobalt(III) complexes with Schiff base ligands. J. Struct. Chem., 2022, 63(9), 1509-1519. https://doi.org/10.1134/s0022476622090128

    Article  CAS  Google Scholar 

  2. R. E. P. Winpenny. Serendipitous assembly of polynuclear cage compounds. J. Chem. Soc., Dalton Trans., 2002, (1), 1-10. https://doi.org/10.1039/b107118c

    Article  Google Scholar 

  3. B. Dutta, R. Jana, C. Sinha, P. P. Ray, and M. H. Mir. Synthesis of a Cd(II) based 1D coordination polymer by in situ ligand generation and fabrication of a photosensitive electronic device. Inorg. Chem. Front., 2018, 5(8), 1998-2005. https://doi.org/10.1039/c8qi00530c

    Article  CAS  Google Scholar 

  4. M. U. Anwar, Y. Lan, L. M. C. Beltran, R. Clérac, S. Pfirrmann, C. E. Anson, and A. K. Powell. In situ ligand transformation in the synthesis of manganese complexes: mono-, tri- and a barrel-shaped tetradeca-nuclear MnII14 aggregate. Inorg. Chem., 2009, 48(12), 5177-5186. https://doi.org/10.1021/ic9001048

    Article  CAS  PubMed  Google Scholar 

  5. M. Das, K. Harms, and S. Chattopadhyay. Novel tandem synthesis of bis(μ-NN′-tetrazolate) bridged dinuclear nickel(II) Schiff base complex via [3+2] cyclo-addition at ambient condition. Dalton Trans., 2014, 43(15), 5643-5647. https://doi.org/10.1039/c3dt52398e

    Article  CAS  PubMed  Google Scholar 

  6. K. T. Mahmudov, M. N. Kopylovich, A. Sabbatini, M. G. B. Drew, L. M. D. R. S. Martins, C. Pettinari, and A. J. L. Pombeiro. Cooperative metal–ligand assisted E/Z isomerization and cyano activation at CuII and CoII complexes of arylhydrazones of active methylene nitriles. Inorg. Chem., 2014, 53(18), 9946-9958. https://doi.org/10.1021/ic501704g

    Article  CAS  PubMed  Google Scholar 

  7. M. H. Sadhu, A. Solanki, T. Kundu, V. Hingu, B. Ganguly, and S. B. Kumar. Direct C–N bond formation in an in situ ligand transformation reaction and formation of polymeric 1D cadmium(II) complexes with end-to-end bridging thiocyanate or selenocyanate ions: Synthesis, structures and theoretical studies. Polyhedron, 2017, 133, 8-15. https://doi.org/10.1016/j.poly.2017.05.007

    Article  CAS  Google Scholar 

  8. A. K. Kostopoulos, A. D. Katsenis, J. M. Frost, V. G. Kessler, E. K. Brechin, and G. S. Papaefstathiou. Circular serendipity: in situ ligand transformation for the self-assembly of an hexadecametallic [CuII16] wheel. Chem. Commun., 2014, 50(95), 15002-15005. https://doi.org/10.1039/c4cc07582j

    Article  CAS  Google Scholar 

  9. C. Camp, J. Andrez, J. Pécaut, and M. Mazzanti. Synthesis of electron-rich uranium(IV) complexes supported by tridentate Schiff base ligands and their multi-electron redox chemistry. Inorg. Chem., 2013, 52(12), 7078-7086. https://doi.org/10.1021/ic4006218

    Article  CAS  PubMed  Google Scholar 

  10. O. A. Adebayo, K. A. Abboud, and G. Christou. New mixed-valence MnII4MnIV clusters from an unusual ligand transformation. Polyhedron, 2017, 122, 71-78. https://doi.org/10.1016/j.poly.2016.10.018

    Article  CAS  Google Scholar 

  11. Q. Chen, F. Jiang, L. Chen, M. Yang, and M. Hong. Solvent- and temperature-controlled in situ ligand reactions mediated by CuII and 3′-[(E)-{[(1S,2S)-2-aminocyclohexyl]imino}methyl]-4′-hydroxy-4-biphenylcarboxlic acid. Chem. - Eur. J., 2012, 18(29), 9117-9124. https://doi.org/10.1002/chem.201104001

    Article  CAS  Google Scholar 

  12. X.-M. Chen and M.-L. Tong. Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res., 2007, 40(2), 162-170. https://doi.org/10.1021/ar068084p

    Article  CAS  Google Scholar 

  13. M. Mondal, S. Ghosh, S. Maity, S. Giri, and A. Ghosh. In situ transformation of a tridentate to a tetradentate unsymmetric Schiff base ligand via deaminative coupling in Ni(II) complexes: Crystal structures, magnetic properties and catecholase activity study. Inorg. Chem. Front., 2020, 7(1), 247-259. https://doi.org/10.1039/c9qi00975b

    Article  CAS  Google Scholar 

  14. R. N. Grimes. Synthesis and serendipity in boron chemistry: A 50 year perspective. J. Organomet. Chem., 2013, 747, 4-15. https://doi.org/10.1016/j.jorganchem.2013.04.018

    Article  CAS  Google Scholar 

  15. R. W. Saalfrank, E. Uller, B. Demleitner, and I. Bernt. Synergistic effect of serendipity and rational design in supramolecular chemistry. In: Molecular Self-Assembly Organic Versus Inorganic Approaches: Structure and Bonding, Vol. 96 / Ed. M. Fuiita. Heidelberg, Germany: Springer, 2000, 149-175.

  16. R. A. Alderden, M. D. Hall, and T. W. Hambley. The discovery and development of cisplatin. J. Chem. Educ., 2006, 83(5), 728. https://doi.org/10.1021/ed083p728

    Article  CAS  Google Scholar 

  17. P. Štěpnička. Forever young: the first seventy years of ferrocene. Dalton Trans., 2022, 51(21), 8085-8102. https://doi.org/10.1039/d2dt00903j

    Article  CAS  PubMed  Google Scholar 

  18. N. T. Coogan, M. A. Chimes, J. Raftery, P. Mocilac, and M. A. Denecke. Regioselective synthesis of V-shaped bistriazinyl-phenanthrolines. J. Org. Chem., 2015, 80(17), 8684-8693. https://doi.org/10.1021/acs.joc.5b01380

    Article  CAS  PubMed  Google Scholar 

  19. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  20. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  21. L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr., 2012, 45(4), 849-854. https://doi.org/10.1107/s0021889812029111

    Article  CAS  Google Scholar 

  22. A. L. Spek. Structure validation in chemical crystallography. Acta Crystallogr., Sect. D: Biol. Crystallogr., 2009, 65(2), 148-155. https://doi.org/10.1107/s090744490804362x

    Article  ADS  CAS  Google Scholar 

  23. F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta, 1977, 44(2), 129-138. https://doi.org/10.1007/bf00549096

    Article  CAS  Google Scholar 

  24. M. A. Spackman and D. Jayatilaka. Hirshfeld surface analysis. CrystEngComm, 2009, 11(1), 19-32. https://doi.org/10.1039/b818330a

    Article  CAS  Google Scholar 

  25. M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, P. R. Spackman, D. Jayatilaka, and M. A. Spackman. CrystalExplorer17. Perth, Australia: University of Western Australia, 2017.

  26. APEX2, SADABS and SAINT. Madison, Wisconsin, USA: Bruker AXS, 2012.

  27. J. K. Nath, Y. Lan, A. K. Powell, and J. B. Baruah. Effect of ancillary ligands in hydrolysis of 1,8-naphthalic anhydride for synthesis of metallacycles of Co2+, Ni2+, and Zn2+. Z. Anorg. Allg. Chem., 2013, 639(12/13), 2250-2257. https://doi.org/10.1002/zaac.201300255

    Article  CAS  Google Scholar 

  28. J. K. Nath. Syntheses and crystal structures of dinuclear metallacycles of Mn(II), Co(II), Ni(II), Cu(II) and Cd(II) of 1,8-naphthalene dicarboxylate exhibiting dihydrogen contact. J. Struct. Chem., 2023, 64(6), 1021-1039. https://doi.org/10.1134/s0022476623060069

    Article  CAS  Google Scholar 

  29. J. K. Nath, A. Mondal, A. K. Powell, and J. B. Baruah. Structures, magnetic properties, and photoluminescence of dicarboxylate coordination polymers of Mn, Co, Ni, Cu having N-(4-pyridylmethyl)-1,8-naphthalimide. Cryst. Growth Des., 2014, 14(9), 4735-4748. https://doi.org/10.1021/cg500882z

    Article  CAS  Google Scholar 

  30. D. Cremer and J. A. Pople. General definition of ring puckering coordinates. J. Am. Chem. Soc., 1975, 97(6), 1354-1358. https://doi.org/10.1021/ja00839a011

    Article  CAS  Google Scholar 

  31. P. Venkatesan, S. Thamotharan, A. Ilangovan, H. Liang, and T. Sundius. Crystal structure, Hirshfeld surfaces and DFT computation of NLO active (2E)-2-(ethoxycarbonyl)-3-[(1-methoxy-1-oxo-3-phenylpropan-2-yl)amino]prop-2-enoic acid. Spectrochim. Acta, Part A, 2016, 153, 625-636. https://doi.org/10.1016/j.saa.2015.09.002

    Article  ADS  CAS  PubMed  Google Scholar 

  32. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 2007, (37), 3814. https://doi.org/10.1039/b704980c

    Article  Google Scholar 

  33. V. R. Hathwar, M. Sist, M. R. V. Jørgensen, A. H. Mamakhel, X. Wang, C. M. Hoffmann, K. Sugimoto, J. Overgaard, and B. B. Iversen. Quantitative analysis of intermolecular interactions in orthorhombic rubrene. IUCrJ, 2015, 2(5), 563-574. https://doi.org/10.1107/s2052252515012130

    Article  CAS  Google Scholar 

  34. M. J. Turner, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Visualisation and characterisation of voids in crystalline materials. CrystEngComm, 2011, 13(6), 1804-1813. https://doi.org/10.1039/c0ce00683a

    Article  CAS  Google Scholar 

Download references

Funding

Acknowledgement. T. Hökelek is grateful to Hacettepe University Scientific Research Project Unit (Grant No. 013 D04 602 004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Göktürk.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 119753.https://doi.org/10.26902/JSC_id119753

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göktürk, T., Topkaya, C.G., Hökelek, T. et al. Serendipitous Synthesis of an Octahedral Ni(II) Complex: Single Crystal Structure, Hirshfeld Surface and Voids Analysis. J Struct Chem 65, 15–27 (2024). https://doi.org/10.1134/S0022476624010025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010025

Keywords

Navigation