Skip to main content
Log in

Synthesis, Single Crystal X-Ray, Hirshfeld Surface Analysis and DFT Calculation Based NBO, HOMO–LUMO, MEP, ECT and Molecular Docking Analysis of N′-[(2,6-Dichlorophenyl)Methylidene]-2-{[3-(Trifluoromethyl)Phenyl]Amino}Benzohydrazide

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new Schiff base compound of N′-[(2,6-dichlorophenyl)methylidene]-2-{[3-(trifluoro-methyl)phenyl] amino}benzohydrazide was synthesized and characterized through various spectroscopic techniques, including infrared,1H NMR, 13C NMR spectroscopy and X-ray diffraction. Experimental results collected by XRD were compared with theoretical results obtained from Density functional theory method. Hirshfeld surface analysis was used to obtain three-dimension molecular surface and two-dimension fingerprint plots to illustrate the intermolecular bonding. Theoretical calculations provide valuable insights into both global and local chemical activity, as well as the properties of molecules and chemicals, including their nucleophilic and electrophilic nature. The DFT method at B3LYP/6-311++G(d,p) basis set was employed to study the optimized structure and geometric parameters, as well as to explore the frontier molecular orbitals, global reactive parameters, Mullikan population analaysis, Natural bond orbital and molecular electrostatic potential characteristics which cannot be obtained by experimental methods. Additionally, electrophilicity based charge transfer study was carried out with DNA bases to determine the direction of charge transfer. Finally, an investigation was carried out using molecular docking analysis to examine the binding energies of the title compound with PDB ID: 2QDJ protein target. The analysis yielded significant insights into the possible interactions, offering valuable findings in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

REFERENCES

  1. G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. Ali, and M. Alam. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci., 2014, 6(2), 69. https://doi.org/10.4103/0975-7406.129170

    Article  CAS  Google Scholar 

  2. F. Tok, B. N. Sağlık, Y. Özkay, Z. A. Kaplancıklı, and B. Koçyiğit-Kaymakçıoğlu. N-substituted arylidene-3-(methylsulfonyl)-2-oxoimidazolidine-1-carbohydrazide as cholinesterase inhibitors: Design, synthesis, and molecular docking study. Chem. Biodivers., 2022, 19(8). https://doi.org/10.1002/cbdv.202200265

    Article  Google Scholar 

  3. K. Akdağ, G. Ünal, F. Tok, F. Arıcıoğlu, H. Temel, and B. Kaymakcıoğlu-Koçyiğit. Synthesis and biological evaluation of some new hydrazone derivatives bearing pyrimidine ring as analgesic and anti-inflammatory agents. Acta Pol. Pharm. - Drug Res., 2018, 75(5), 1147-1159. https://doi.org/10.32383/appdr/86743

    Article  CAS  Google Scholar 

  4. B. Kocyigit-Kaymakcioglu, S. S. Yazici, F. Tok, M. Dikmen, S. Engür, E. E. Oruc-Emre, and A. Iyidogan. Synthesis and anticancer activity of new hydrazide-hydrazones and their Pd(II) complexes. Lett. Drug Des. Discov., 2019, 16(5), 522-532. https://doi.org/10.2174/1570180815666180816124102

    Article  CAS  Google Scholar 

  5. S. Şenkardeş, Ö. Erdoğan, Ö. Çevik, and Ş. G. Küçükgüzel. Synthesis and biological evaluation of novel aryloxyacetic acid hydrazide derivatives as anticancer agents. Synth. Commun., 2021, 51(17), 2634-2643. https://doi.org/10.1080/00397911.2021.1945105

    Article  CAS  Google Scholar 

  6. A. E. Evren, D. Nuha, S. Dawbaa, B. N. Sağlık, and L. Yurttaş. Synthesis of novel thiazolyl hydrazone derivatives as potent dual monoamine oxidase-aromatase inhibitors. Eur. J. Med. Chem., 2022, 229, 114097. https://doi.org/10.1016/j.ejmech.2021.114097

    Article  CAS  PubMed  Google Scholar 

  7. D. Osmaniye, B. N. Sağlık, S. Levent, Y. Özkay, and Z. A. Kaplancıklı. Design, synthesis and biological evaluation of new N-acyl hydrazones with a methyl sulfonyl moiety as selective COX-2 inhibitors. Chem. Biodivers., 2021, 18(11). https://doi.org/10.1002/cbdv.202100521

    Article  Google Scholar 

  8. I. Aprahamian. Hydrazone switches and things in between. Chem. Commun., 2017, 53(50), 6674-6684. https://doi.org/10.1039/c7cc02879b

    Article  CAS  Google Scholar 

  9. L. A. Tatum, X. Su, and I. Aprahamian. Simple hydrazone building blocks for complicated functional materials. Acc. Chem. Res., 2014, 47(7), 2141-2149. https://doi.org/10.1021/ar500111f

    Article  CAS  PubMed  Google Scholar 

  10. W. Paulus, H. Ringsdorf, S. Diele, and G. Pelzl. Columnar phases from semi-discoid molecules. Phase induction via hydrogen bonding and charge transfer interactions. Liq. Cryst., 1991, 9(6), 807-819. https://doi.org/10.1080/02678299108055003

    Article  CAS  Google Scholar 

  11. N. S. Al-Kadhi, F. S. Alamro, S. A. Popoola, S. M. Gomha, N. S. Bedowr, S. S. Al-Juhani, and H. A. Ahmed. Novel imidazole liquid crystals; experimental and computational approaches. Molecules, 2022, 27(14), 4607. https://doi.org/10.3390/molecules27144607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. X. Su and I. Aprahamian. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev., 2014, 43(6), 1963. https://doi.org/10.1039/c3cs60385g

    Article  CAS  PubMed  Google Scholar 

  13. M. E. Belowich and J. F. Stoddart. Dynamic imine chemistry. Chem. Soc. Rev., 2012, 41(6), 2003. https://doi.org/10.1039/c2cs15305j

    Article  CAS  PubMed  Google Scholar 

  14. F. R. Japp and F. Klingemann. Ueber Benzolazo- und Benzolhydrazofettsäuren. Ber. Dtsch. Chem. Ges., 1887, 20(2), 2942-2944. https://doi.org/10.1002/cber.188702002165

    Article  Google Scholar 

  15. S. Wagaw, B. H. Yang, and S. L. Buchwald. A palladium-catalyzed strategy for the preparation of indoles: A novel entry into the fischer indole synthesis. J. Am. Chem. Soc., 1998, 120(26), 6621/6622. https://doi.org/10.1021/ja981045r

    Article  CAS  Google Scholar 

  16. Ł. Popiołek. Hydrazide–hydrazones as potential antimicrobial agents: Overview of the literature since 2010. Med. Chem. Res., 2017, 26(2), 287-301. https://doi.org/10.1007/s00044-016-1756-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. S. Karakuş, A. Maryam, E. E. Oruç-Emre, and S. Türk. Synthesis, characterization, antituberculosis activity and computational studies on novel Schiff bases of 1,3,4-thiadiazole derivatives. J. Res. Pharm., 2020, 24(6), 793-800. https://doi.org/10.35333/jrp.2020.232

    Article  CAS  Google Scholar 

  18. H. Cevher Koç, İ. Atlihan, P. M. Tiber, O. Orun, and Ş. G. Küçükgüzel. Synthesis and anticancer activity against prostate cancer of hydrazide-hydrazones derived from etodolac. J. Res. Pharm., 2022, 26(1), 1018-1029. https://doi.org/10.29228/jrp.97

    Article  CAS  Google Scholar 

  19. G. Sheldrick. SHELXS-2014, program for crystal structure solution. Göttingen, Germany: University of Göttingen, 2014.

  20. G. Sheldrick. SHELXL-2018/3 software package. Göttingen, Germany: University of Göttingen, 2018.

  21. L. J. Farrugia. WinGX suite for small-molecule single-crystal crystallography. J. Appl. Crystallogr., 1999, 32(4), 837/838. https://doi.org/10.1107/s0021889899006020

    Article  CAS  Google Scholar 

  22. L. J. Farrugia. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr., 2012, 45(4), 849-854. https://doi.org/10.1107/s0021889812029111

    Article  CAS  Google Scholar 

  23. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, and P. A. Wood. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53(1), 226-235. https://doi.org/10.1107/s1600576719014092

    Article  CAS  Google Scholar 

  24. A. L. Spek. Single-crystal structure validation with the program PLATON. J. Appl. Crystallogr., 2003, 36(1), 7-13. https://doi.org/10.1107/s0021889802022112

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09. Wallingford, CT, USA: Gaussian, Inc., 2009.

  26. Z. Zahraee and H. Golchoubian. Solvatochromic, halochromic and thermochromic effects of copper(II) complexes containing N-tert-butyl 2-picolylamine, and halide ion; a computational study. J. Mol. Struct., 2023, 1285, 135483. https://doi.org/10.1016/j.molstruc.2023.135483

    Article  CAS  Google Scholar 

  27. A. D. Becke. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys., 1992, 96(3), 2155-2160. https://doi.org/10.1063/1.462066

    Article  ADS  CAS  Google Scholar 

  28. M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys., 1998, 108(11), 4439-4449. https://doi.org/10.1063/1.475855

    Article  ADS  CAS  Google Scholar 

  29. M. F. Sanner. Python: a programming language for software integration and development. J. Mol. Graph. Model., 1999, 17(1), 57-61.

  30. Visualizer DS, v.17.2.0.16349. San Diego, USA: Dassault Systemes Biovia, 2016.

  31. L. A. Anthony, D. Rajaraman, G. Sundararajan, M. Suresh, P. Nethaji, R. Jaganathan, and K. Poomani. Synthesis, crystal structure, Hirshfeld surface analysis, DFT, molecular docking and molecular dynamic simulation studies of (E)-2,6-bis(4-chlorophenyl)-3-methyl-4-(2-(2,4,6-trichlorophenyl)hydrazono)piperidine derivatives. J. Mol. Struct., 2022, 1266, 133483. https://doi.org/10.1016/j.molstruc.2022.133483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. S. Murugavel, C. Ravikumar, G. Jaabil, and P. Alagusundaram. Synthesis, crystal structure analysis, spectral investigations (NMR, FT-IR, UV), DFT calculations, ADMET studies, molecular docking and anticancer activity of 2-(1-benzyl-5-methyl-1H-1,2,3-triazol-4-yl)-4-(2-chlorophenyl)-6-methoxypyridine - A novel potent human topoisomerase IIα inhibitor. J. Mol. Struct., 2019, 1176, 729-742. https://doi.org/10.1016/j.molstruc.2018.09.010

    Article  ADS  CAS  Google Scholar 

  33. M. Ashfaq, G. Bogdanov, A. Ali, M. N. Tahir, and S. Abdullah. Pyrimethamine-based novel co-crystal salt: Synthesis, single-crystal investigation, Hirshfeld surface analysis and DFT inspection of the 2,4-diamino-5-(4-chlorophenyl)-6-ethylpyrimidin-1-ium 2,4-dichlorobenzoate (1:1) (DECB). J. Mol. Struct., 2021, 1235, 130215. https://doi.org/10.1016/j.molstruc.2021.130215

    Article  CAS  Google Scholar 

  34. H. Tanak, Y. Köysal, Y. Ünver, M. Yavuz, Ş. Işık, and K. Sancak. An experimental and DFT computational study on 4-(3-(1H-imidazol-1-yl)propyl)-5-methyl-2H-1,2,4-triazol-3(4H)-one monohydrate. Mol. Phys., 2010, 108(2), 127-139. https://doi.org/10.1080/00268970903535491

    Article  ADS  CAS  Google Scholar 

  35. N. K. Kaynar, M. Yavuz, H. Tanak, S. Şahin, O. Büyükgüngör, and E. Ağar. Crystal structure of 2-((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)-1,2-diphenylethanone. Crystallogr. Rep., 2018, 63(3), 375-378. https://doi.org/10.1134/s1063774518030136

    Article  ADS  CAS  Google Scholar 

  36. H. Tanak, Y. Köysal, M. Yavuz, O. Büyükgüngör, and K. Sancak. Experimental and DFT computational studies on 5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one. J. Mol. Model., 2010, 16(3), 447-457. https://doi.org/10.1007/s00894-009-0559-1

    Article  CAS  PubMed  Google Scholar 

  37. H. Ünver, B. Boyacıoğlu, C. T. Zeyrek, M. Yıldız, N. Demir, N. Yıldırım, O. Karaosmanoğlu, H. Sivas, and A. Elmalı. Synthesis, spectral and quantum chemical studies and use of (E)-3-[(3,5-bis(trifluoromethyl)phenylimino)methyl]benzene-1,2-diol and its Ni(II) and Cu(II) complexes as an anion sensor, DNA binding, DNA cleavage, anti-microbial, anti-mutagenic and anti-cancer agent. J. Mol. Struct., 2016, 1125, 162-176. https://doi.org/10.1016/j.molstruc.2016.06.058

    Article  ADS  CAS  Google Scholar 

  38. Ş. Atalay, S. Gerçeker, S. Meral, and H. Bülbül. 2-{(E)-[(3-chloro-4-methylphenyl)imino]methyl}-4-(trifluoromethoxy)phenol. IUCrData, 2017, 2(12), x171725. https://doi.org/10.1107/s2414314617017254

    Article  CAS  Google Scholar 

  39. F. B. Kaynak, S. Özbey, and N. Karalı. Three novel compounds of 5-trifluoromethoxy-1H-indole-2,3-dione 3-thiosemicarbazone: Synthesis, crystal structures and molecular interactions. J. Mol. Struct., 2013, 1049, 157-164. https://doi.org/10.1016/j.molstruc.2013.06.039

    Article  ADS  CAS  Google Scholar 

  40. S. Yeşilbağ, E. B. Çınar, N. Dege, E. Ağar, and E. Saif. Crystal structure and Hirshfeld surface analysis of dimethyl 3,3′-{[(1E,2E)-ethane-1,2-diylidene]bis(azanylylidene)}bis(4-methylbenzoate). Acta Crystallogr., Sect. E: Crystallogr. Commun., 2022, 78(4), 340-345. https://doi.org/10.1107/s2056989022002092

    Article  CAS  Google Scholar 

  41. S. Demir Kanmazalp, O. E. Doĝan, V. Taşdemir, N. Dege, E. Aĝar, and I. O. Fritsky. Crystal structure and Hirshfeld surface analysis of a Schiff base: (Z)-6-[(5-chloro-2-methoxyanilino)methylidene]-2-hydroxycyclohexa-2,4-dien-1-one. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2019, 75(3), 362-366. https://doi.org/10.1107/s2056989019002123

    Article  CAS  Google Scholar 

  42. S. Kansiz, N. Dege, A. S. Aydin, E. Ağar, and I. P. Matushko. Crystal structure and Hirshfeld surface analysis of (Z)-6-[(2-hydroxy-5-nitroanilino)methylidene]-4-methylcyclohexa-2,4-dien-1-one. Acta Crystallogr., Sect. E: Crystallogr. Commun., 2019, 75(6), 812-815. https://doi.org/10.1107/s205698901900673x

    Article  CAS  Google Scholar 

  43. N. Süleymanoğlu, R. Ustabaş, Ş. Direkel, Y. B. Alpaslan, and Y. Ünver. 1,2,4-triazole derivative with Schiff base; thiol-thione tautomerism, DFT study and antileishmanial activity. J. Mol. Struct., 2017, 1150, 82-87. https://doi.org/10.1016/j.molstruc.2017.08.075

    Article  ADS  CAS  Google Scholar 

  44. R. Ustabaş, D. Ünlüer, and G. Kör. Crystal structure 4-(2,4-dihydroxybenzylideneamino)-5-methyl-2H-1,2,4-triazol-3(4H)-one. J. Chem. Crystallogr., 2011, 41(8), 1237-1240. https://doi.org/10.1007/s10870-011-0081-z

    Article  CAS  Google Scholar 

  45. N. O. İskeleli, Y. B. Alpaslan, Ş. Direkel, A. G. Ertürk, N. Süleymanoğlu, and R. Ustabaş. The new Schiff base 4-[(4-hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one: Experimental, DFT calculational studies and in vitro antimicrobial activity. Spectrochim. Acta, Part A, 2015, 139, 356-366. https://doi.org/10.1016/j.saa.2014.12.071

    Article  ADS  CAS  PubMed  Google Scholar 

  46. M. Turner, J. McKinnon, S. Wolff, D. Grimwood, P. Spackman, D. Jayatilaka, and M. Spackman. CrystalExplorer17. Perth, Australia: University of Western Australia 2017.

  47. A. L. A. Kala, K. Kumara, N. V. Harohally, and N. K. Lokanath. Synthesis, characterization and hydrogen bonding attributes of halogen bonded O-hydroxy Schiff bases: Crystal structure, Hirshfeld surface analysis and DFT studies. J. Mol. Struct., 2020, 1202, 127238. https://doi.org/10.1016/j.molstruc.2019.127238

    Article  CAS  Google Scholar 

  48. A. Masoudiasl, M. Montazerozohori, S. Joohari, L. Taghizadeh, G. Mahmoudi, and A. Assoud. Structural investigation of a new cadmium coordination compound prepared by sonochemical process: Crystal structure, Hirshfeld surface, thermal, TD-DFT and NBO analyses. Ultrason. Sonochem., 2019, 52, 244-256. https://doi.org/10.1016/j.ultsonch.2018.11.024

    Article  CAS  PubMed  Google Scholar 

  49. A. E. Reed and F. Weinhold. Natural bond orbital analysis of near-Hartree–Fock water dimer. J. Chem. Phys., 1983, 78(6), 4066-4073. https://doi.org/10.1063/1.445134

    Article  ADS  CAS  Google Scholar 

  50. M. K. Abdel-Latif, H. R. Abd El-Mageed, H. S. Mohamed, and F. M. Mustafa. Study the solvation effect on 6-phenyl-2-thioxo-1,2-dihydropyridine-3-carbonitrile derivatives by TD- DFT calculations and molecular dynamics simulations. J. Mol. Struct., 2020, 1200, 127056. https://doi.org/10.1016/j.molstruc.2019.127056

    Article  CAS  Google Scholar 

  51. Z. Demircioğlu. Synthesis, crystal structure, spectroscopic characterization, chemical activity and molecular docking studies of (E)-2-(((3-chloro-4-methylphenyl)imino)methyl)-6-ethoxyphenol. J. Mol. Struct., 2021, 1246, 131114. https://doi.org/10.1016/j.molstruc.2021.131114

    Article  CAS  Google Scholar 

  52. T. Koopmans. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1934, 1(1-6), 104-113. https://doi.org/10.1016/s0031-8914(34)90011-2

    Article  ADS  Google Scholar 

  53. N. E. Eltayeb, F. Şen, J. Lasri, M. A. Hussien, S. E. Elsilk, B. A. Babgi, H. Gökce, and Y. Sert. Hirshfeld surface analysis, spectroscopic, biological studies and molecular docking of (4E)-4-((naphthalen-2-yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one. J. Mol. Struct., 2020, 1202, 127315. https://doi.org/10.1016/j.molstruc.2019.127315

    Article  CAS  Google Scholar 

  54. T. S. Ganesan, N. Elangovan, V. Vanmathi, S. Sowrirajan, S. Chandrasekar, K. S. Murthy, and R. Thomas. Spectroscopic, computational (DFT), quantum mechanical studies and protein-ligand interaction of Schiff base 6,6-((1,2-phenylenebis(azaneylylidene))bis(methaneylylidene))bis(2-methoxyphenol) from o-phenylenediamine and 3-methoxysalicylaldehyde. J. Indian Chem. Soc., 2022, 99(10), 100713. https://doi.org/10.1016/j.jics.2022.100713

    Article  CAS  Google Scholar 

  55. T. Vishwanath, A. Ashish, C. K. R. Shankar, and K. D. Amar. Single-crystal XRD, Hirshfeld surfaces, 3D energy framework calculations, and DFT studies of 4,5-diphenyl-1,3,4-thiadiazole-2-thiolate: A mesoionic compound. J. Mol. Struct., 2022, 1264, 133290. https://doi.org/10.1016/j.molstruc.2022.133290

    Article  CAS  Google Scholar 

  56. F. Öztürk. Structural characterization (XRD, FTIR) and magnetic studies of Cd(II)-sulfamethoxazole-2,2′-bipyridine: DFT and Hirshfeld surface analysis. J. Mol. Struct., 2023, 1271, 133945. https://doi.org/10.1016/j.molstruc.2022.133945

    Article  CAS  Google Scholar 

  57. H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K. S. Munawar, M. Ashfaq, and M. N. Tahir. Diverse coordination of isoniazid hydrazone Schiff base ligand towards iron(III): Synthesis, characterization, SC-XRD, HSA, QTAIM, MEP, NCI, NBO and DFT study. J. Mol. Struct., 2022, 1250, 131691. https://doi.org/10.1016/j.molstruc.2021.131691

    Article  CAS  Google Scholar 

  58. E. Güzel, Z. Demircioğlu, C. Çiçek, E. Ağar, and M. Yavuz. Experimental (XRD, FTIR, UV-Vis, NMR) and theoretical investigations (chemical activity descriptors, NBO, DNA/ECT) of (E)-2-((2-hydroxy-5-methoxybenzylidene)amino)-4-nitrophenol. Mol. Cryst. Liq. Cryst., 2021, 724(1), 58-76. https://doi.org/10.1080/15421406.2021.1905143

    Article  ADS  CAS  Google Scholar 

  59. Z. Demircioğlu, G. Kaştaş, Ç. A. Kaştaş, and R. Frank. Spectroscopic, XRD, Hirshfeld surface and DFT approach (chemical activity, ECT, NBO, FFA, NLO, MEP, NPA & MPA) of (E)-4-bromo-2-[(4-bromophenylimino)methyl]-6-ethoxyphenol. J. Mol. Struct., 2019, 1191, 129-137. https://doi.org/10.1016/j.molstruc.2019.03.060

    Article  ADS  CAS  Google Scholar 

  60. A. L. Murphree and W. F. Benedict. Retinoblastoma: Clues to human oncogenesis. Science, 1984, 223(4640), 1028-1033. https://doi.org/10.1126/science.6320372

    Article  ADS  CAS  PubMed  Google Scholar 

  61. M. Hassler, S. Singh, W. W. Yue, M. Luczynski, R. Lakbir, F. Sanchez-Sanchez, T. Bader, L. H. Pearl, and S. Mittnacht. Crystal structure of the retinoblastoma protein N domain provides insight into tumor suppression, ligand interaction, and holoprotein architecture. Mol. Cell, 2007, 28(3), 371-385. https://doi.org/10.1016/j.molcel.2007.08.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by The Scientific and Technical Research Council of Turkey (TÜBİTAK), Research Fund Project Number: 220S428.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Suhta.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 121415.https://doi.org/10.26902/JSC_id121415

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhta, A., Saral, S., Çoruh, U. et al. Synthesis, Single Crystal X-Ray, Hirshfeld Surface Analysis and DFT Calculation Based NBO, HOMO–LUMO, MEP, ECT and Molecular Docking Analysis of N′-[(2,6-Dichlorophenyl)Methylidene]-2-{[3-(Trifluoromethyl)Phenyl]Amino}Benzohydrazide. J Struct Chem 65, 196–215 (2024). https://doi.org/10.1134/S0022476624010189

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010189

Keywords

Navigation