Skip to main content
Log in

Convenient and Green Synthesis of Pom-Coated Gold Nanostructures and Photocatalytic Activity under Visible Light

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Synthesizing efficient and environment–friendly visible–light photocatalyst with simple methods is becoming attractive in these years in the field of photocatalysis. We report the preparation of Au@SbW9Co3 nanostructures, an environment-friendly visible–light catalyst, by coating Au0 with Polyoxometalate (POM) in a green and convenient way, the photocatalytic activities of which were investigated under visible light. The prepared Au@POM nanostructures showed the photocatalytic active in visible light region, which indicates a synergistic effect between POM and Au0. In addition, the morphology of Au@POM nanostructures, species of POM, the proportion of POM in catalyst and the concentration of Au@POM all affect the photocatalytic effect of catalysts. When the used POM was SbW9Co3, the molar ratio of Au3+:SbW9Co3 was 2:1.0 and the catalyst concentration was 0.15 mM, the highest photocatalytic effect was obtained, and the removal efficiency for EY reached 99% after catalyzing 60 min in visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

REFERENCES

  1. K. Piaskowski, R. Świderska-Dąbrowska, and P. K. Zarzycki. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int., 2018, 101(5), 1371-1384. https://doi.org/10.5740/jaoacint.18-0051

    Article  CAS  PubMed  Google Scholar 

  2. A. M. Tayeb, D. S. Hussein, and R. Farouq. Optimization of photocatalytic degradation of methylene blue dye using titanate nanotube. J. Nanophotonics, 2020, 14(02), 1. https://doi.org/10.1117/1.jnp.14.026008

    Article  CAS  Google Scholar 

  3. M. Kaykhaii, M. Sasani, and S. Marghzari. Removal of dyes from the environment by adsorption process. Chem. Mater. Eng., 2018, 6(2), 31-35. https://doi.org/10.13189/cme.2018.060201

    Article  CAS  Google Scholar 

  4. K. M. Reza, A. Kurny, and F. Gulshan. Parameters affecting the photocatalytic degradation of dyes using TiO2: A review. Appl. Water Sci., 2017, 7(4), 1569-1578. https://doi.org/10.1007/s13201-015-0367-y

    Article  ADS  CAS  Google Scholar 

  5. S. H. S. Chan, T. Yeong Wu, J. C. Juan, and C. Y. Teh. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol., 2011, 86(9), 1130-1158. https://doi.org/10.1002/jctb.2636

    Article  CAS  Google Scholar 

  6. C.-C. Hsueh and B.-Y. Chen. Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola. J. Hazard. Mater., 2007, 141(3), 842-849. https://doi.org/10.1016/j.jhazmat.2006.07.056

    Article  CAS  PubMed  Google Scholar 

  7. C. McCullagh, N. Skillen, M. Adams, and P. K. J. Robertson. Photocatalytic reactors for environmental remediation: a review. J. Chem. Technol. Biotechnol., 2011, 86(8), 1002-1017. https://doi.org/10.1002/jctb.2650

    Article  CAS  Google Scholar 

  8. D. B. Miklos, C. Remy, M. Jekel, K. G. Linden, J. E. Drewes, and U. Hübner. Evaluation of advanced oxidation processes for water and wastewater treatment - A critical review. Water Res., 2018, 139, 118-131. https://doi.org/10.1016/j.watres.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  9. D. S. Bhatkhande, V. G. Pangarkar, and A. A. Beenackers. Photocatalytic degradation for environmental applications - A review. J. Chem. Technol. Biotechnol., 2002, 77(1), 102-116. https://doi.org/10.1002/jctb.532

    Article  CAS  Google Scholar 

  10. S. Zhang, S. Zhao, S. Huang, B. Hu, M. Wang, Z. Zhang, L. He, and M. Du. Photocatalytic degradation of oxytetracycline under visible light by nanohybrids of CoFe alloy nanoparticles and nitrogen-/sulfur-codoped mesoporous carbon. Chem. Eng. J., 2021, 420, 130516. https://doi.org/10.1016/j.cej.2021.130516

    Article  CAS  Google Scholar 

  11. H. Karimi-Maleh, B. G. Kumar, S. Rajendran, J. Qin, S. Vadivel, D. Durgalakshmi, F. Gracia, M. Soto-Moscoso, Y. Orooji, and F. Karimi. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq., 2020, 314, 113588. https://doi.org/10.1016/j.molliq.2020.113588

    Article  CAS  Google Scholar 

  12. C. L. Hill and D. A. Bouchard. Catalytic photochemical dehydrogenation of organic substrates by polyoxometalates. J. Am. Chem. Soc., 1985, 107(18), 5148-5157. https://doi.org/10.1021/ja00304a019

    Article  CAS  Google Scholar 

  13. Y. Guo and C. Hu. Heterogeneous photocatalysis by solid polyoxometalates. J. Mol. Catal. A: Chem., 2007, 262(1/2), 136-148. https://doi.org/10.1016/j.molcata.2006.08.039

    Article  CAS  Google Scholar 

  14. P. Lei, C. Chen, J. Yang, W. Ma, J. Zhao, and L. Zang. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environ. Sci. Technol., 2005, 39(21), 8466-8474. https://doi.org/10.1021/es050321g

    Article  ADS  CAS  PubMed  Google Scholar 

  15. R. Akid and J. R. Darwent. Heteropolytungstates as catalysts for the photochemical reduction of oxygen and water. J. Chem. Soc., Dalton Trans., 1985, (2), 395. https://doi.org/10.1039/dt9850000395

    Article  Google Scholar 

  16. N. Fu and G. Lu. Graft of lacunary Wells–Dawson heteropoly blue on the surface of TiO2 and its photocatalytic activity under visible light. Chem. Commun., 2009, (24), 3591. https://doi.org/10.1039/b906073a

    Article  Google Scholar 

  17. A. Wittstock, A. Wichmann, J. Biener, and M. Bäumer. Nanoporous gold: A new gold catalyst with tunable properties. Faraday Discuss., 2011, 152, 87. https://doi.org/10.1039/c1fd00022e

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Y. Tian and T. Tatsuma. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc., 2005, 127(20), 7632-7637. https://doi.org/10.1021/ja042192u

    Article  CAS  PubMed  Google Scholar 

  19. Ş. Neaţu, B. Cojocaru, V. I. Pârvulescu, V. Şomoghi, M. Alvaro, and H. Garcia. Visible-light C-heteroatom bond cleavage and detoxification of chemical warfare agents using titania-supported gold nanoparticles as photocatalyst. J. Mater. Chem., 2010, 20(20), 4050. https://doi.org/10.1039/c0jm00345j

    Article  CAS  Google Scholar 

  20. S. Mandal, P. Selvakannan, R. Pasricha, and M. Sastry. Keggin ions as UV-switchable reducing agents in the synthesis of Au Core–Ag shell nanoparticles. J. Am. Chem. Soc., 2003, 125(28), 8440/8441. https://doi.org/10.1021/ja034972t

    Article  CAS  PubMed  Google Scholar 

  21. G. Zhang, B. Keita, R. N. Biboum, F. Miserque, P. Berthet, A. Dolbecq, P. Mialane, L. Catala, and L. Nadjo. Synthesis of various crystalline gold nanostructures in water: The polyoxometalate β-[H4PMo12O40]3− as the reducing and stabilizing agent. J. Mater. Chem., 2009, 19(45), 8639. https://doi.org/10.1039/b903599k

    Article  CAS  Google Scholar 

  22. S. Martín, Y. Takashima, C.-G. Lin, Y.-F. Song, H. N. Miras, and L. Cronin. Integrated synthesis of gold nanoparticles coated with polyoxometalate clusters. Inorg. Chem., 2019, 58(7), 4110-4116. https://doi.org/10.1021/acs.inorgchem.8b03013

    Article  CAS  PubMed  Google Scholar 

  23. R. Tan, C. Wang, S. Cui, H. Wang, J. Han, and R. Xie. Synthesis, Crystal structure and antitumor activities of a new cobalt-containing tungstoantimonate Na9[{Na(H2O)2}3{Co(H2O)}3(α-B-SbW9O33)2]·28H2O. J. Macromol. Sci., Part A, 2014, 51(1), 33-36. https://doi.org/10.1080/10601325.2014.850621

    Article  CAS  Google Scholar 

  24. E. Papaconstantinou. Photochemistry of polyoxometallates of molybdenum and tungsten and/or vanadium. Chem. Soc. Rev., 1989, 18, 1. https://doi.org/10.1039/cs9891800001

    Article  CAS  Google Scholar 

  25. D.-L. Long, E. Burkholder, and L. Cronin. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices. Chem. Soc. Rev., 2007, 36(1), 105-121. https://doi.org/10.1039/b502666k

    Article  CAS  PubMed  Google Scholar 

  26. B. Keita, T. Liu, and L. Nadjo. Synthesis of remarkably stabilized metal nanostructures using polyoxometalates. J. Mater. Chem., 2009, 19(1), 19-33. https://doi.org/10.1039/b813303d

    Article  CAS  Google Scholar 

  27. R. Tan, J. Meng, T. Xiao, J. Wang, and P. Zhao. Green synthesis of Au@POM nanostructures by coating reduction-type polyoxometalate. In: Proc. 2017 3rd Int. Forum on Energy, Environment Science and Materials (IFEESM 2017), Shenzhen, China, Nov 25/26, 2017. Paris, France: Atlantis Press, 2018, 177. https://doi.org/10.2991/ifeesm-17.2018.34

    Book  Google Scholar 

  28. R. Tan, T. Xiao, P. Zhao, J. Wang, and J. Meng. Synthesis and controlling morphology of Au@SbW9 nanostructures for potential biomedical applications. In: Biological Information and Biomedical Engineering (BIBE 2018): Proc. Int. Conf., Shanghai, China, June 6-8 / Ed. C. Liu. Berlin, Germany: VDE, 2018, 428.

  29. J. Turkevich, P. C. Stevenson, and J. Hillier. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  30. G. Frens. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci., 1973, 241(105), 20-22. https://doi.org/10.1038/physci241020a0

    Article  ADS  CAS  Google Scholar 

  31. X. Huang, R. Chen, C. Zhang, J. Chai, S. Wang, D. Chi, and S. J. Chua. Ultrafast and robust UV Luminescence from Cu-Doped ZnO nanowires mediated by plasmonic hot electrons. Adv. Opt. Mater., 2016, 4(6), 960-966. https://doi.org/10.1002/adom.201600026

    Article  CAS  Google Scholar 

  32. L. Zhao, X. Ji, X. Sun, J. Li, W. Yang, and X. Peng. Formation and stability of gold nanoflowers by the seeding approach: The effect of intraparticle ripening. J. Phys. Chem. C, 2009, 113(38), 16645-16651. https://doi.org/10.1021/jp9058406

    Article  CAS  Google Scholar 

  33. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc., 2007, 129(45), 13939-13948. https://doi.org/10.1021/ja074447k

    Article  CAS  PubMed  Google Scholar 

  34. J.-X. Fan, Y.-J. Wang, T.-T. Fan, X.-D. Cui, and D.-M. Zhou. Photo-induced oxidation of Sb(III) on goethite. Chemosphere, 2014, 95, 295-300. https://doi.org/10.1016/j.chemosphere.2013.08.094

    Article  ADS  CAS  PubMed  Google Scholar 

  35. S. Li, X. Yu, G. Zhang, Y. Ma, J. Yao, B. Keita, N. Louis, and H. Zhao. Green chemical decoration of multiwalled carbon nanotubes with polyoxometalate-encapsulated gold nanoparticles: visible light photocatalytic activities. J. Mater. Chem., 2011, 21(7), 2282-2287. https://doi.org/10.1039/c0jm02683b

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by General Research Project Supported by Mudanjiang Normal College (YB2022006) and College Students′ Innovation and Entrepreneurship Training Project Supported by the finance of Heilongjiang Province (S202210233009) and Graduate Science and Technology innovation Project Supported by Mudanjiang Normal College (kjcx2022-067mdjnu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tan.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 120099.https://doi.org/10.26902/JSC_id120099

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, R., Li, Y., Wang, Q. et al. Convenient and Green Synthesis of Pom-Coated Gold Nanostructures and Photocatalytic Activity under Visible Light. J Struct Chem 65, 48–62 (2024). https://doi.org/10.1134/S0022476624010050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010050

Keywords

Navigation