Skip to main content
Log in

Rhenium Cluster Complexes with Polyborohydride Anions, [Re6S8(Me2PzH)6]X (X = B10H10, B12H12)

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Interaction of [Re6S8(Me2PzH)6]Br2 with K2B10H10 and (Et3NH)2B12H12 yields novel [Re6S8(Me2PzH)6][B10H10] (1) and [Re6S8(Me2PzH)6][B12H12] (2) hybrid compounds combining [Re6S8 (Me2PzH)6]2+ metal-cluster cations and [BnHn]2– polyborohydride cluster anions (n = 10, 12) in their structure. Crystals of the prepared compounds exhibit an ionic 3D supramolecular structure formed by short H–B⋯H–C contacts. At room temperature, these compounds exhibit red phosphorescence with λmax = 680 nm (1) and 670 nm (2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

REFERENCES

  1. A. D. Mironova, M. A. Mikhaylov, A. M. Maksimov, K. A. Brylev, A. L. Gushchin, D. V. Stass, A. S. Novikov, I. V. Eltsov, P. A. Abramov, and M. N. Sokolov. Phosphorescent complexes of {Mo6I8}4+ and {W6I8}4+ with perfluorinated aryl thiolates featuring unusual molecular structures. Eur. J. Inorg. Chem., 2022, 2022(7). https://doi.org/10.1002/ejic.202100890

    Article  Google Scholar 

  2. C. de la Torre, R. Gavara, A. García-Fernández, M. Mikhaylov, M. N. Sokolov, J. F. Miravet, F. Sancenón, R. Martínez-Máñez, and F. Galindo. Enhancement of photoactivity and cellular uptake of (Bu4N)2[Mo6I8(CH3COO)6] complex by loading on porous MCM-41 support. Photodynamic studies as an anticancer agent. Biomater. Adv., 2022, 140, 213057. https://doi.org/10.1016/j.bioadv.2022.213057

    Article  CAS  PubMed  Google Scholar 

  3. M. V. Volostnykh, G. A. Kirakosyan, A. A. Sinelshchikova, P. A. Loboda, P. V. Dorovatovskii, M. A. Mikhaylov, A. Y. Tsivadze, M. N. Sokolov, and Y. G. Gorbunova. Supramolecular hybrids based on Ru(II) porphyrin and octahedral Mo(II) iodide cluster. Dalton Trans., 2023, 52(16), 5354-5365. https://doi.org/10.1039/d3dt00251a

    Article  CAS  PubMed  Google Scholar 

  4. J. G. Elistratova, M. A. Mikhaylov, T. S. Sukhikh, K. V. Kholin, I. R. Nizameev, A. R. Khazieva, A. T. Gubaidullin, A. D. Voloshina, G. V. Sibgatullina, D. V. Samigullin, K. A. Petrov, M. N. Sokolov, and A. R. Mustafina. Anticancer potential of hexamolybdenum clusters [{Mo6I8}(L)6]2− (L = CF3COO and C6F5COO) incorporated into different nanoparticulate forms. J. Mol. Liq., 2021, 343, 117601. https://doi.org/10.1016/j.molliq.2021.117601

    Article  CAS  Google Scholar 

  5. J. Elistratova, B. Faizullin, A. Shamsieva, T. Gerasimova, I. V. Kashnik, K. A. Brylev, V. Babaev, K. Kholin, I. Nizameev, E. Musina, S. Katsyuba, A. Karasik, O. Sinyashin, and A. Mustafina. Water dispersible supramolecular assemblies built from luminescent hexarhenium clusters and silver(I) complex with pyridine-2-ylphospholane for sensorics. J. Mol. Liq., 2020, 305, 112853. https://doi.org/10.1016/j.molliq.2020.112853

    Article  CAS  Google Scholar 

  6. B. Faizullin, A. Gubaidullin, T. Gerasimova, I. Kashnik, K. Brylev, K. Kholin, I. Nizameev, A. Voloshina, G. Sibgatullina, D. Samigullin, K. Petrov, E. Musina, A. Karasik, and A. Mustafina. “Proton sponge” effect and apoptotic cell death mechanism of Agx–Re6 nanocrystallites derived from the assembly of [{Re6S8}(OH)6–n(H2O)n]n–4 with Ag+ ions. Colloids Surf., A, 2022, 648, 129312. https://doi.org/10.1016/j.colsurfa.2022.129312

    Article  CAS  Google Scholar 

  7. B. Faizullin, I. Dayanova, I. Strelnik, K. Kholin, I. Nizameev, A. Gubaidullin, A. Voloshina, T. Gerasimova, I. Kashnik, K. Brylev, G. Sibgatullina, D. Samigullin, K. Petrov, E. Musina, A. Karasik, and A. Mustafina. pH-Driven Intracellular nano-to-molecular disassembly of heterometallic [Au2L2]{Re6Q8} colloids (L = PNNP ligand; Q = S2−; or Se2−). Nanomaterials, 2022, 12(18), 3229. https://doi.org/10.3390/nano12183229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. M. R. Ryzhikov, Y. M. Gayfulin, A. A. Ulantikov, D. O. Arentov, S. G. Kozlova, and Y. V. Mironov. Evolution of the electronic structure of the trans-[Re6S8bipy4Cl2] octahedral rhenium cluster during reduction. Molecules, 2023, 28(9), 3658. https://doi.org/10.3390/molecules28093658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Y. M. Litvinova, Y. M. Gayfulin, T. S. Sukhikh, K. A. Brylev, and Y. V. Mironov. Coordination polymers based on rhenium octahedral chalcocyanide cluster anions and Ag+ cations with bipyridine analogs. Molecules, 2022, 27(22), 7684. https://doi.org/10.3390/molecules27227684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. A. A. Ulantikov, K. A. Brylev, T. S. Sukhikh, Y. V. Mironov, V. K. Muravieva, and Y. M. Gayfulin. Octahedral rhenium cluster complexes with 1,2-bis(4-pyridyl)ethylene and 1,3-bis(4-pyridyl)propane as apical ligands. Molecules, 2022, 27(22), 7874. https://doi.org/10.3390/molecules27227874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. A. W. Maverick, J. S. Najdzionek, D. MacKenzie, D. G. Nocera, and H. B. Gray. Spectroscopic, electrochemical, and photochemical properties of molybdenum(II) and tungsten(II) halide clusters. J. Am. Chem. Soc., 1983, 105(7), 1878-1882. https://doi.org/10.1021/ja00345a034

    Article  CAS  Google Scholar 

  12. T. G. Gray, C. M. Rudzinski, E. E. Meyer, R. H. Holm, and D. G. Nocera. Spectroscopic and photophysical properties of hexanuclear rhenium(III) chalcogenide clusters. J. Am. Chem. Soc., 2003, 125(16), 4755-4770. https://doi.org/10.1021/ja0286371

    Article  CAS  PubMed  Google Scholar 

  13. M. N. Sokolov, M. A. Mihailov, E. V. Peresypkina, K. A. Brylev, N. Kitamura, and V. P. Fedin. Highly luminescent complexes [Mo6X8(n-C3F7COO)6]2– (X = Br, I). Dalton Trans., 2011, 40(24), 6375. https://doi.org/10.1039/c1dt10376h

    Article  CAS  PubMed  Google Scholar 

  14. Y. V. Mironov, N. G. Naumov, K. A. Brylev, O. A. Efremova, V. E. Fedorov, and K. Hegetschweiler. Rhenium–chalcogenide–cyano clusters, Cu2+ ions, and 1,2,3,4-tetraaminobutane as molecular building blocks for chiral coordination polymers. Angew. Chem., Int. Ed., 2004, 43(10), 1297-1300. https://doi.org/10.1002/anie.200351595

    Article  CAS  Google Scholar 

  15. S. Cordier, Y. Molard, K. A. Brylev, Y. V. Mironov, F. Grasset, B. Fabre, and N. G. Naumov. Advances in the engineering of near infrared emitting liquid crystals and copolymers, extended porous frameworks, theranostic tools and molecular junctions using tailored Re6 cluster building blocks. J. Clust. Sci., 2015, 26(1), 53-81. https://doi.org/10.1007/s10876-014-0734-0

    Article  CAS  Google Scholar 

  16. S.-J. Choi, K. A. Brylev, J.-Z. Xu, Y. V. Mironov, V. E. Fedorov, Y. S. Sohn, S.-J. Kim, and J.-H. Choy. Cellular uptake and cytotoxicity of octahedral rhenium cluster complexes. J. Inorg. Biochem., 2008, 102(11), 1991-1996. https://doi.org/10.1016/j.jinorgbio.2008.07.013

    Article  CAS  PubMed  Google Scholar 

  17. K. A. Brylev, Y. V. Mironov, S. S. Yarovoi, N. G. Naumov, V. E. Fedorov, S.-J. Kim, N. Kitamura, Y. Kuwahara, K. Yamada, S. Ishizaka, and Y. Sasaki. A family of octahedral rhenium cluster complexes [Re6Q8(H2O)n(OH)6–n]n–4 (Q = S, Se; n = 0–6): Structural and pH-dependent spectroscopic studies. Inorg. Chem., 2007, 46(18), 7414-7422. https://doi.org/10.1021/ic7005265

    Article  CAS  PubMed  Google Scholar 

  18. B. S. Akhmadeev, I. R. Nizameev, K. V. Kholin, A. D. Voloshina, T. P. Gerasimova, A. T. Gubaidullin, M. K. Kadirov, I. E. Ismaev, K. A. Brylev, R. R. Zairov, and A. R. Mustafina. Molecular and nano-structural optimization of nanoparticulate Mn2+-hexarhenium cluster complexes for optimal balance of high T1- and T2-weighted contrast ability with low hemoagglutination and cytotoxicity. Pharmaceutics, 2022, 14(7), 1508. https://doi.org/10.3390/pharmaceutics14071508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O. Bochkova, S. Fedorenko, A. Mikhailov, G. Kostin, M. Mikhailov, M. Sokolov, J. Elistratova, K. Kholin, M. Tarasov, Y. Budnikova, G. Sibgatullina, D. Samigullin, I. Nizameev, V. Salnikov, I. Yakovlev, D. Rozhentsova, A. Lyubina, S. Amerhanova, A. Voloshina, T. Gerasimova, and A. Mustafina. Dark cytotoxicity beyond photo-induced one of silica nanoparticles incorporated with RuII nitrosyl complexes and luminescent {Mo6I8} cluster units. J. Photochem. Photobiol., A, 2024, 446, 115147. https://doi.org/10.1016/j.jphotochem.2023.115147

    Article  CAS  Google Scholar 

  20. Y. V. Mironov, K. A. Brylev, M. A. Shestopalov, S. S. Yarovoi, V. E. Fedorov, H. Spies, H.-J. Pietzsch, H. Stephan, G. Geipel, G. Bernhard, and W. Kraus. Octahedral rhenium cluster complexes with organic ligands: Synthesis, structure and properties of [[Re6Q8(3,5-Me2PzH)6]Br2·2(3,5-Me2PzH) (Q = S, Se). Inorg. Chim. Acta, 2006, 359(4), 1129-1134. https://doi.org/10.1016/j.ica.2005.08.012

    Article  CAS  Google Scholar 

  21. G. M. Sheldrick. SHELXT - Integrated space-group and crystal-structure determination. Acta Crystallogr., Sect. A: Found. Adv., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053273314026370

    Article  ADS  Google Scholar 

  22. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  ADS  Google Scholar 

  23. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42(2), 339-341. https://doi.org/10.1107/s0021889808042726

    Article  CAS  Google Scholar 

  24. Y. V. Mironov, M. A. Shestopalov, K. A. Brylev, S. S. Yarovoi, G. V. Romanenko, V. E. Fedorov, H. Spies, H. Pietzsch, H. Stephan, G. Geipel, G. Bernhard, and W. Kraus. [Re6Q7O(3,5-Me2PzH)6]Br2·3,5-Me2PzH (Q = S, Se) - new octahedral rhenium cluster complexes with organic ligands: Original synthetic approach and unexpected ligand exchange in the cluster core. Eur. J. Inorg. Chem., 2005, 2005(4), 657-661. https://doi.org/10.1002/ejic.200400465

    Article  CAS  Google Scholar 

  25. R. El Osta, A. Demont, N. Audebrand, Y. Molard, T. T. Nguyen, R. Gautier, K. A. Brylev, Y. V. Mironov, N. G. Naumov, N. Kitamura, and S. Cordier. Supramolecular frameworks built up from red-phosphorescent trans-Re6 cluster building blocks: One pot synthesis, crystal structures, and DFT investigations. Z. Anorg. Allg. Chem., 2015, 641(6), 1156-1163. https://doi.org/10.1002/zaac.201500074

    Article  CAS  Google Scholar 

  26. A. A. Ivanov, V. K. Khlestkin, K. A. Brylev, I. V. Eltsov, A. I. Smolentsev, Y. V. Mironov, and M. A. Shestopalov. Synthesis, structure and luminescence properties of new chalcogenide octahedral rhenium cluster complexes with 4-aminopyridine [{Re6Q8}(4-NH2-py)6]2+. J. Coord. Chem., 2016, 69(5), 841-850. https://doi.org/10.1080/00958972.2016.1142537

    Article  CAS  Google Scholar 

  27. M. S. Tarasenko, E. O. Golenkov, N. G. Naumov, N. K. Moroz, and V. E. Fedorov. Unusual H-bonding in novel cyano-cluster polymeric hydrates [(H){Ln(H2O)4}{Re6S8(CN)6}]·2H2O (Ln = Yb, Lu). Chem. Commun., 2009, (19), 2655. https://doi.org/10.1039/b820722d

    Article  Google Scholar 

  28. A. Ledneva, S. Ferlay, N. G. Naumov, M. Mauro, S. Cordier, N. Kyritsakas, and M. W. Hosseini. Hydrogen bonded networks based on hexarhenium(III) chalcocyanide cluster complexes: Structural and photophysical characterization. New J. Chem., 2018, 42(14), 11888-11895. https://doi.org/10.1039/c8nj02310g

    Article  CAS  Google Scholar 

  29. K. A. Brylev, Y. V. Mironov, S. G. Kozlova, V. E. Fedorov, S.-J. Kim, H.-J. Pietzsch, H. Stephan, A. Ito, S. Ishizaka, and N. Kitamura. The first octahedral cluster complexes with terminal formate ligands: synthesis, structure, and properties of K4[Re6S8(HCOO)6] and Cs4[Re6S8(HCOO)6]. Inorg. Chem., 2009, 48(5), 2309-2315. https://doi.org/10.1021/ic802178q

    Article  CAS  PubMed  Google Scholar 

  30. T. Yoshimura, C. Suo, K. Tsuge, S. Ishizaka, K. Nozaki, Y. Sasaki, N. Kitamura, and A. Shinohara. Excited-state properties of octahedral hexarhenium(III) complexes with redox-active N-heteroaromatic ligands. Inorg. Chem., 2010, 49(2), 531-540. https://doi.org/10.1021/ic9015788

    Article  CAS  Google Scholar 

  31. L. F. Szczepura, D. L. Cedeño, D. B. Johnson, R. McDonald, S. A. Knott, K. M. Jeans, and J. L. Durham. Substitution of the terminal chloride ligands of [Re6S8Cl6]4− with triethylphosphine: Photophysical and electrochemical properties of a new series of [Re6S8]2+ based clusters. Inorg. Chem., 2010, 49(24), 11386-11394. https://doi.org/10.1021/ic101348h

    Article  CAS  PubMed  Google Scholar 

  32. Y. M. Litvinova, Y. M. Gayfulin, J. van Leusen, D. G. Samsonenko, V. A. Lazarenko, Y. V. Zubavichus, P. Kögerler, and Y. V. Mironov. Metal–organic frameworks based on polynuclear lanthanide complexes and octahedral rhenium clusters. Inorg. Chem. Front., 2019, 6(6), 1518-1526. https://doi.org/10.1039/c9qi00339h

    Article  CAS  Google Scholar 

  33. S. Mebs, R. Kalinowski, S. Grabowsky, D. Förster, R. Kickbusch, E. Justus, W. Morgenroth, C. Paulmann, P. Luger, D. Gabel, and D. Lentz. Real-space indicators for chemical bonding. experimental and theoretical electron density studies of four deltahedral boranes. Inorg. Chem., 2011, 50(1), 90-103. https://doi.org/10.1021/ic1013158

    Article  CAS  PubMed  Google Scholar 

  34. L. W. Zimmermann and T. Schleid. Crystal structures and properties of divalent transition metal decahydro-closo-decaborate hydrates [M(H2O)6][B10H10]·2H2O (M = Mn, Fe, Co, Ni, Zn). Z. Kristallogr. - Cryst. Mater., 2013, 228(10). https://doi.org/10.1524/zkri.2013.1634

    Article  Google Scholar 

  35. V. V. Avdeeva, I. N. Polyakova, A. V. Churakov, A. V. Vologzhanina, E. A. Malinina, K. Y. Zhizhin, and N. T. Kuznetsov. Complexation and exopolyhedral substitution of the terminal hydrogen atoms in the decahydro-closo-decaborate anion in the presence of cobalt(II). Polyhedron, 2019, 162, 65-70. https://doi.org/10.1016/j.poly.2019.01.051

    Article  CAS  Google Scholar 

  36. E. A. Malinina, I. K. Kochneva, V. V. Avdeeva, L. V. Goeva, A. S. Kubasov, and N. T. Kuznetsov. Synthesis and structure of mononuclear copper(II) complexes with azaheterocyclic ligands L (L = Bipy, BPA, and Phen) and dodecahydro-closo-dodecaborate anion [B12H12]2–. Russ. J. Inorg. Chem., 2019, 64(10), 1210-1219. https://doi.org/10.1134/s0036023619100085

    Article  CAS  Google Scholar 

  37. S. E. Korolenko, A. S. Kubasov, L. V. Goeva, V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov. Features of the formation of zinc(II) and cadmium(II) complexes with the inner-sphere and outer-sphere position of the decahydro-closo-decaborate anion in the presence of azaheterocyclic ligands. Inorg. Chim. Acta, 2021, 520, 120315. https://doi.org/10.1016/j.ica.2021.120315

    Article  CAS  Google Scholar 

  38. R. K. Rastsvetaeva, S. M. Aksenov, and N. V. Chukanov. Crystal structure of günterblassite, a new mineral with a triple tetrahedral layer. Dokl. Chem., 2012, 442(2), 57-62. https://doi.org/10.1134/s0012500812020115

    Article  CAS  Google Scholar 

  39. V. V. Avdeeva, A. E. Dziova, I. N. Polyakova, E. A. Malinina, L. V. Goeva, and N. T. Kuznetsov. Copper(I), copper(II), and heterovalent copper(I,II) complexes with 1,10-phenanthroline and the closo-decaborate anion. Inorg. Chim. Acta, 2015, 430, 74-81. https://doi.org/10.1016/j.ica.2015.02.029

    Article  CAS  Google Scholar 

  40. V. V. Avdeeva, A. V. Vologzhanina, E. A. Malinina, and N. T. Kuznetsov. Dihydrogen bonds in salts of boron cluster anions [BnHn]2– with protonated heterocyclic organic bases. Crystals, 2019, 9(7), 330. https://doi.org/10.3390/cryst9070330

    Article  CAS  Google Scholar 

  41. S. E. Korolenko, A. S. Kubasov, L. V. Goeva, V. V. Avdeeva, E. A. Malinina, and N. T. Kuznetsov. Reactivity of the dodecahydro-closo-dodecaborate anion in zinc(II) and cadmium(II) complexation at the presence of azaheterocyclic ligands. Inorg. Chim. Acta, 2021, 527, 120587. https://doi.org/10.1016/j.ica.2021.120587

    Article  CAS  Google Scholar 

  42. A. S. Kubasov, E. Y. Matveev, E. S. Turyshev, I. N. Polyakova, K. Y. Zhizhin, and N. T. Kuznetsov. Interaction of [B10H10]2– and [B12H12]2– with nitro compounds. Dokl. Chem., 2017, 477(1), 257-260. https://doi.org/10.1134/s0012500817110088

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Russian Science Foundation (project No. 19-73-20196-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Artem’ev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Russian Text © The Author(s), 2024, published in Zhurnal Strukturnoi Khimii, 2024, Vol. 65, No. 1, 121365.https://doi.org/10.26902/JSC_id121365

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davydova, M.P., Sukhikh, T.S., Rakhmanova, M.I. et al. Rhenium Cluster Complexes with Polyborohydride Anions, [Re6S8(Me2PzH)6]X (X = B10H10, B12H12). J Struct Chem 65, 186–195 (2024). https://doi.org/10.1134/S0022476624010177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476624010177

Keywords

Navigation