Skip to main content
Log in

Zinc’s Role in Mitigating Copper Toxicity for Plants and Microorganisms in Industrially Contaminated Soils: A Review

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

This review focuses on the issue of metal antagonism in soils contaminated by multiple metals as a result of industrial emissions. Building upon previous findings in aquatic ecosystems, the potential of zinc to mitigate copper toxicity in more complex soil systems is explored. A range of studies investigating the role of zinc in reducing copper toxicity to plants and microorganisms in soils contaminated by copper mining in central Chile are examined. The mechanisms underlying metal interactions in soils, including the terrestrial biotic ligand model and the intensity/capacity/quantity concept, are thoroughly discussed. Furthermore, the review underscores the pressing need for future studies to enhance our understanding and develop effective strategies for mitigating copper toxicity in industrially contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Liu, L.W., Li, W., Song, W.P., and Guo, M.X., Remediation techniques for heavy metal-contaminated soils: Principles and applicability, Sci. Total Environ., 2018, vol. 633, pp. 206–219. https://doi.org/10.1016/j.scitotenv.2018.03.161

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Wieser, P.E. and Jenner, F.E., Chalcophile elements: Systematics and relevance, in Encyclopedia of Geology, Alderton, D. and Elias, S.A., Eds., 2021, pp. 67–80.

    Google Scholar 

  3. Preston, S., Coad, N., Townend, J., et al., Biosensing the acute toxicity of metal interactions: Are they additive, synergistic, or antagonistic?, Environ. Toxicol. Chem., 2000, vol. 19, no. 3, pp. 775–780. https://doi.org/10.1002/etc.5620190332

    Article  CAS  Google Scholar 

  4. Cedergreen, N., Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology, PloS One, 2014, vol. 9, no. 5, p. e96580. https://doi.org/10.1371/journal.pone.0096580

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Escher, B.I., Stapleton, H.M., and Schymanski, E.L., Tracking complex mixtures of chemicals in our changing environment, Science, 2020, vol. 367, no. 6476, pp. 388–392. https://doi.org/10.1126/science.aay6636

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Bart, S., Short, S., Jager, T., et al., How to analyse and account for interactions in mixture toxicity with toxicokinetic-toxicodynamic models, Sci. Total Environ., 2022, vol. 843, pp. 157048. https://doi.org/10.1016/j.scitotenv.2022.157048

    Article  CAS  PubMed  ADS  Google Scholar 

  7. De Oliveira, V.H. and Tibbett, M., Cd and Zn interactions and toxicity in ectomycorrhizal basidiomycetes in axenic culture, PeerJ, 2018, vol. 6, p. e4478. https://doi.org/10.7717/peerj.4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duffus, J.H., “Heavy metals” a meaningless term? (IUPAC Technical Report), Pure Appl. Chem., 2002, vol. 74, pp. 793–807. https://doi.org/10.1351/pac200274050793

    Article  CAS  Google Scholar 

  9. Hodson, M.E., Heavy metals—Geochemical bogey men?, Environ. Pollut., 2004, vol. 129, no. 3, pp. 341–343. https://doi.org/10.1016/j.envpol.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  10. Koptsik, S.V. and Koptsik, G.N., Assessment of current risks of excessive heavy metal accumulation in soils based on the concept of critical loads: A review, Eurasian Soil Sci., 2022, vol. 55, no. 5, pp. 627–640. https://doi.org/10.1134/s1064229322050039

    Article  CAS  ADS  Google Scholar 

  11. Paquin, P.R., Gorsuch, J.W., Apte, S., et al., The biotic ligand model: A historical overview, Comp. Biochem. Physiol., C: Comp. Pharmacol., 2002, vol. 133, nos. 1–2, pp. 3–35. https://doi.org/10.1016/s1532-0456(02)00112-6

    Article  Google Scholar 

  12. Moiseenko, T.I., Bioavailability and ecotoxicity of metals in aquatic systems: Critical contamination levels, Geochem. Int., 2019, vol. 57, no. 7, pp. 737–750. https://doi.org/10.1134/s0016702919070085

    Article  CAS  Google Scholar 

  13. Bræk, G.S., Jensen, A., and Mohus, Å., Heavy metal tolerance of marine phytoplankton. III. Combined effects of copper and zinc ions on cultures of four common species, J. Exp. Mar. Biol. Ecol., 1976, vol. 25, no. 1, pp. 37–50. https://doi.org/https://doi.org/10.1016/0022-0981-(76)90074-5

    Article  Google Scholar 

  14. Dirilgen, N. and Inel, Y., Effects of zinc and copper on growth and metal accumulation in duckweed, Lemna minor, Bull. Environ. Contam. Toxicol., 1994, vol. 53, no. 3, pp. 442–449. https://doi.org/10.1007/bf00197238

    Article  CAS  PubMed  Google Scholar 

  15. Upadhyay, R. and Panda, S.K., Zinc reduces copper toxicity induced oxidative stress by promoting antioxidant defense in freshly grown aquatic duckweed Spirodela polyrhiza L., J. Hazard. Mater., 2010, vol. 175, nos. 1–3, pp. 1081–1084. https://doi.org/10.1016/j.jhazmat.2009.10.016

    Article  CAS  PubMed  Google Scholar 

  16. Otitoloju, A.A., Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle Tympanotonus fuscatus var radula (L.), Ecotoxicol. Environ. Saf., 2002, vol. 53, no. 3, pp. 404–415. https://doi.org/https://doi.org/10.1016/S0147-6513(02)00032-5

    Article  CAS  PubMed  Google Scholar 

  17. Obiakor, M.O. and Ezeonyejiaku, C.D., Copper-zinc coergisms and metal toxicity at predefined ratio concentrations: Predictions based on synergistic ratio model, Ecotoxicol. Environ. Saf., 2015, vol. 117, pp. 149–154. https://doi.org/10.1016/j.ecoenv.2015.03.035

    Article  CAS  Google Scholar 

  18. Le, T.T.Y., Vijver, M.G., Kinraide, T.B., et al., Modelling metal-metal interactions and metal toxicity to lettuce Lactuca sativa following mixture exposure (Cu2+–Zn2+ and Cu2+–Ag+), Environ. Pollut., 2013, vol. 176, pp. 185–192. https://doi.org/10.1016/j.envpol.2013.01.017

    Article  CAS  PubMed  Google Scholar 

  19. Versieren, L., Smets, E., De Schamphelaere, K., et al., Mixture toxicity of copper and zinc to barley at low level effects can be described by the Biotic Ligand Model, Plant Soil, 2014, vol. 381, nos. 1–2, pp. 131–142. https://doi.org/10.1007/s11104-014-2117-6

    Article  CAS  Google Scholar 

  20. Liu, Y., Vijver, M.G., and Peijnenburg, W.J.G.M., Comparing three approaches in extending biotic ligand models to predict the toxicity of binary metal mixtures (Cu–Ni, Cu–Zn and Cu–Ag) to lettuce (Lactuca sativa L.), Chemosphere, 2014, vol. 112, pp. 282–288. https://doi.org/10.1016/j.chemosphere.2014.04.077

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Thakali, S., Allen, H., Di Toro, D., et al., A terrestrial biotic ligand model. 1. Development and application to Cu and Ni toxicities to barley root elongation in soils, Environ. Sci. Technol., 2006, vol. 40, pp. 7085–7093. https://doi.org/10.1021/es061171s

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Smolders, E., Oorts, K., van Sprang, P., et al., Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards, Environ. Toxicol. Chem., 2009, vol. 28, no. 8, pp. 1633–1642. https://doi.org/10.1897/08-592.1

    Article  CAS  PubMed  Google Scholar 

  23. Neaman, A., Selles, I., Martínez, C.E., and Dovletyarova, E.A., Analyzing soil metal toxicity: Spiked or field-contaminated soils?, Environ. Toxicol. Chem., 2020, vol. 39, pp. 513–514. https://doi.org/10.1002/etc.4654

    Article  CAS  PubMed  Google Scholar 

  24. Santa-Cruz, J., Vasenev, I.I., Gaete, H., et al., Metal ecotoxicity studies with spiked versus field-contaminated soils: Literature review, methodological shortcomings and research priorities, Russ. J. Ecol., 2021, vol. 52, no. 6, pp. 478–484. https://doi.org/10.1134/S1067413621060126

    Article  Google Scholar 

  25. Santa-Cruz, J., Peñaloza, P., Korneykova, M.V., and Neaman, A., Thresholds of metal and metalloid toxicity in field-collected anthropogenically contaminated soils: A review, Geogr., Environ., Sustainability, 2021, vol. 14, no. 2, pp. 6–21. https://doi.org/10.24057/2071-9388-2021-023

    Article  Google Scholar 

  26. McBride, M.B. and Cai, M.F., Copper and zinc aging in soils for a decade: Changes in metal extractability and phytotoxicity, Environ. Chem., 2016, vol. 13, no. 1, pp. 160–167. https://doi.org/10.1071/en15057

    Article  CAS  Google Scholar 

  27. Ford, R.G., Bertsch, P.M., and Farley, K.J., Changes in transition and heavy metal partitioning during hydrous iron oxide aging, Environ. Sci. Technol., 1997, vol. 31, no. 7, pp. 2028–2033. https://doi.org/10.1021/es960824+

    Article  CAS  ADS  Google Scholar 

  28. Ávila, G., Gaete, H., Morales, M., and Neaman, A., Reproducción de Eisenia fetida en suelos agrícolas de áreas mineras contaminadas por cobre y arsénico, Pesqui. Agropecu. Bras., 2007, vol. 42, no. 3, pp. 435–441. https://doi.org/10.1590/S0100-204X2007000300018

    Article  Google Scholar 

  29. Fischer, E. and Koszorus, L., Sublethal effects, accumulation capacities and elimination rates of As, Hg and Se in the manure worm, Eisenia fetida (Oligochaeta, Lumbricidae), Pedobiologia, 1992, vol. 36, no. 3, pp. 172–178.

    Article  CAS  Google Scholar 

  30. Abbas, M.S., Akmal, M., Ullah, S., et al., Effectiveness of zinc and gypsum application against cadmium toxicity and accumulation in wheat (Triticum aestivum L.), Commun. Soil Sci. Plant Anal., 2017, vol. 48, no. 14, pp. 1659–1668. https://doi.org/10.1080/00103624.2017.1373798

    Article  CAS  Google Scholar 

  31. Rehman, M.Z.U., Rizwan, M., Ali, S., et al., Contrasting effects of organic and inorganic amendments on reducing lead toxicity in wheat, Bull. Environ. Contam. Toxicol., 2017, vol. 99, no. 5, pp. 642–647. https://doi.org/10.1007/s00128-017-2177-4

    Article  CAS  Google Scholar 

  32. Dubrovina, T.A., Losev, A.A., Karpukhin, M.M., et al., Gypsum soil amendment in metal-polluted soils—an added environmental hazard, Chemosphere, 2021, vol. 281, pp. 130889. https://doi.org/10.1016/j.chemosphere.2021.130889

    Article  CAS  PubMed  ADS  Google Scholar 

  33. Koptsik, G.N., Koptsik, S.V., and Smirnova, I.E., Alternative technologies for remediation of technogenic barrens in the Kola Subarctic, Eurasian Soil Sci., 2016, vol. 49, no. 11, pp. 1294–1309. https://doi.org/10.1134/s1064229316090088

    Article  CAS  ADS  Google Scholar 

  34. Neaman, A., Metal phytoextraction from polluted soils: A utopian idea, Idesia (Chile), 2022, vol. 40, no. 4, pp. 2–5. https://doi.org/10.4067/S0718-34292022000400002

    Article  Google Scholar 

  35. Neaman, A., Soil metals, Idesia (Chile), 2022, vol. 40, no. 2, pp. 2–6. https://doi.org/10.4067/S0718-34292022000200002

    Article  Google Scholar 

  36. Nahmani, J., Hodson, M.E., and Black, S., A review of studies performed to assess metal uptake by earthworms, Environ. Pollut., 2007, vol. 145, no. 2, pp. 402–424. https://doi.org/10.1016/j.envpol.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  37. Verdejo, J., Ginocchio, R., Sauvé, S., et al., Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile, Ecotoxicol. Environ. Saf., 2015, vol. 122, pp. 171–177. https://doi.org/10.1016/j.ecoenv.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  38. Bustos, V., Mondaca, P., Sauvé, S., et al., Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile, Ecotoxicol. Environ. Saf., 2015, vol. 122, pp. 448–454. https://doi.org/10.1016/j.ecoenv.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  39. Prudnikova, E.V., Neaman, A., Terekhova, V.A., et al., Root elongation method for the quality assessment of metal-polluted soils: Whole soil or soil-water extract?, J. Soil Sci. Plant Nutr., 2020, vol. 20, pp. 2294–2303. https://doi.org/10.1007/s42729-020-00295-x

    Article  CAS  Google Scholar 

  40. Zhikharev, A.P., Sahakyan, L., Tepanosyan, G., et al., Metal phytotoxicity thresholds in copper smelter-contaminated soils, Idesia (Chile), 2022, vol. 40, no. 3, pp. 135–143. https://doi.org/10.4067/S0718-34292022000300135

    Article  Google Scholar 

  41. Artemyeva, Z.S., Frid, A.S., and Titova, V.I., The migration availability of potassium to plants on loamy soils, Agrokhimiya, 2019, vol. 7, pp. 16–26. https://doi.org/10.1134/s0002188119070032

    Article  CAS  Google Scholar 

  42. Il’in, V.B., Heavy metals in the soil-crop system, Eurasian Soil Sci., 2007, vol. 40, no. 9, pp. 993–999. https://doi.org/10.1134/s1064229307090104

    Article  ADS  Google Scholar 

  43. Garcia, J.M.V., Navarrete, M.I.M., Saez, J.A.L., and Morencos, I.D., Environmental impact of copper mining and metallurgy during the Bronze Age at Kargaly (Orenburg region, Russia), Trabajos Prehist., 2010, vol. 67, no. 2, pp. 511–544. https://doi.org/10.3989/tp.2010.10054

    Article  Google Scholar 

  44. Dovletyarova, E.A., Zhikharev, A.P., Polyakov, D.G., et al., Extremely high soil copper content, yet low phytotoxicity: A unique case of monometallic soil pollution at Kargaly, Russia, Environ. Toxicol. Chem., 2023, vol. 42, no. 3, pp. 707–713. https://doi.org/10.1002/etc.5562

    Article  CAS  PubMed  Google Scholar 

  45. Sauvé, S., Cook, N., Hendershot, W.H., and McBride, M.B., Linking plant tissue concentrations and soil copper pools in urban contaminated soils, Environ. Pollut., 1996, vol. 94, no. 2, pp. 153–157. https://doi.org/10.1016/S0269-7491(96)00081-4

    Article  PubMed  Google Scholar 

  46. Kabata-Pendias, A., Soil–plant transfer of trace elements—an environmental issue, Geoderma, 2004, vol. 122, pp. 143–149. https://doi.org/10.1016/j.geoderma.2004.01.004

    Article  CAS  ADS  Google Scholar 

  47. Lillo-Robles, F., Tapia-Gatica, J., Díaz-Siefer, P., et al., Which soil Cu pool governs phytotoxicity in field-collected soils contaminated by copper smelting activities in central Chile?, Chemosphere, 2020, vol. 242, p. 125176. https://doi.org/10.1016/j.chemosphere.2019.125176

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Sauvé, S., Dumestre, A., McBride, M., and Hendershot, W., Derivation of soil quality criteria using predicted chemical speciation of Pb2+ and Cu2+, Environ. Toxicol. Chem., 1998, vol. 17, no. 8, pp. 1481–1489. https://doi.org/10.1002/etc.5620170808

    Article  Google Scholar 

  49. Echevarria, G., Morel, J.L., Fardeau, J.C., and Leclerc-Cessac, E., Assessment of phytoavailability of nickel in soils, J. Environ. Qual., 1998, vol. 27, no. 5, pp. 1064–1070. https://doi.org/10.2134/jeq1998.00472425002700050011x

    Article  CAS  Google Scholar 

  50. Checkai, R., Van Genderen, E., Sousa, J.P., et al., Deriving site-specific clean-up criteria to protect ecological receptors (plants and soil invertebrates) exposed to metal or metalloid soil contaminants via the direct contact exposure pathway, Integr. Environ. Assess. Manage., 2014, vol. 10, no. 3, pp. 346–357. https://doi.org/10.1002/ieam.1528

    Article  CAS  Google Scholar 

  51. Spurgeon, D.J., Ricketts, H., Svendsen, C., et al., Hierarchical responses of soil invertebrates (earthworms) to toxic metal stress, Environ. Sci. Technol., 2005, vol. 39, no. 14, pp. 5327–5334. https://doi.org/10.1021/es050033k

    Article  CAS  PubMed  ADS  Google Scholar 

  52. Hassan, M.J., Zhang, G., Wu, F., et al., Zinc alleviates growth inhibition and oxidative stress caused by cadmium in rice, J. Plant Nutr. Soil Sci., 2005, vol. 168, pp. 255–261. https://doi.org/10.1002/jpln.200420403

    Article  CAS  Google Scholar 

  53. Milone, M.T., Sgherri, C., Clijsters, H., and Navari-Izzo, F., Antioxidative responses of wheat treated with realistic concentration of cadmium, Environ. Exp. Bot., 2003, vol. 50, no. 3, pp. 265–276. https://doi.org/10.1016/s0098-8472(03)00037-6

    Article  CAS  Google Scholar 

  54. Venkatachalam, P., Jayaraj, M., Manikandan, R., et al., Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis, Plant Physiol. Biochem., 2017, vol. 110, pp. 59–69. https://doi.org/10.1016/j.plaphy.2016.08.022

    Article  CAS  PubMed  Google Scholar 

  55. Zhao, A.Q., Tian, X.H., Lu, W.H., et al., Effect of zinc on cadmium toxicity in winter wheat, J. Plant Nutr., 2011, vol. 34, nos. 9–11, pp. 1372–1385. https://doi.org/10.1080/01904167.2011.580879

    Article  CAS  Google Scholar 

  56. Cakmak, I., Tansley review no. 111. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species, New Phytol., 2000, vol. 146, no. 2, pp. 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x

    Article  CAS  PubMed  Google Scholar 

  57. Aravind, P. and Prasad, M.N.V., Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: A free floating freshwater macrophyte, Plant Physiol. Biochem., 2003, vol. 41, no. 4, pp. 391–397. https://doi.org/10.1016/s0981-9428(03)00035-4

    Article  CAS  Google Scholar 

  58. Tomasik, P., Magadza, C.M., Mhizha, S., et al., Metal-metal interactions in biological systems. Part IV. Freshwater snail Bulinus globosus, Water, Air, Soil Pollut., 1995, vol. 83, nos. 1–2, pp. 123–145. https://doi.org/10.1007/bf00482599

    Article  CAS  ADS  Google Scholar 

  59. Montvydiene, D. and Marciulioniene, D., Assessment of toxic interaction of metals in binary mixtures using Lepidium sativum and Spirodela polyrrhiza, Pol. J. Environ. Stud., 2007, vol. 16, no. 5, pp. 777–783.

    CAS  Google Scholar 

  60. Weast, R., CRC Handbook of Chemistry and Physics, Cleveland: CRC, 1976.

    Google Scholar 

  61. Kausar, M.A., Chaudhry, F.M., Rashid, A., et al., Micronutrient availability to cereals from calcareous soils. 1. Comprative Zn and Cu deficiency and their mutual interaction in rice and wheat, Plant Soil, 1976, vol. 45, no. 2, pp. 397–410. https://doi.org/10.1007/bf00011702

    Article  CAS  Google Scholar 

  62. Stowhas, T., Verdejo, J., Yáñez, C., et al., Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile, Chemosphere, 2018, vol. 209, pp. 960–963. https://doi.org/10.1016/j.chemosphere.2018.06.166

    Article  CAS  PubMed  ADS  Google Scholar 

  63. McGrath, S.P., Brookes, P.C., and Giller, K.E., Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by Trifolium repens L., Soil Biol. Biochem., 1988, vol. 20, no. 4, pp. 415–424. https://doi.org/10.1016/0038-0717-(88)90052-1

    Article  CAS  Google Scholar 

  64. Broos, K., Mertens, J., and Smolders, E., Toxicity of heavy metals in soil assessed with various soil microbial and plant growth assays: A comparative study, Environ. Toxicol. Chem., 2005, vol. 24, no. 3, pp. 634–640. https://doi.org/10.1897/04-036R.1

    Article  CAS  PubMed  Google Scholar 

  65. Evdokimova, G.A., Kalabin, G.V., and Mozgova, N.P., Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise, Eurasian Soil Sci., 2011, vol. 44, no. 2, pp. 237–244. https://doi.org/10.1134/s1064229311020037

    Article  CAS  ADS  Google Scholar 

  66. Slukovskaya, M.V., Kremenetskaya, I.P., Ivanova, L.A., and Vasilieva, T.N., Remediation in conditions of an operating copper-nickel plant: Results of perennial experiment, Non-Ferrous Met., 2017, vol. 2, pp. 20–26. https://doi.org/10.17580/nfm.2017.02.04

    Article  Google Scholar 

  67. Stuckey, J.W., Neaman, A., Verdejo, J., et al., Zinc alleviates copper toxicity to lettuce and oat in copper contaminated soils, J. Soil Sci. Plant Nutr., 2021, vol. 21, pp. 1229–1235. https://doi.org/10.1007/s42729-021-00435-x

    Article  CAS  Google Scholar 

  68. Stuckey, J.W., Mondaca, P., and Guzmán-Amado, C., Impact of mining contamination source on copper phytotoxicity in agricultural soils from central Chile, AgroSur, 2021, vol. 49, no. 1, pp. 21–27. https://doi.org/10.4206/agrosur.2021.v49n1-04

    Article  Google Scholar 

  69. Giller, K.E., Witter, E., and McGrath, S.P., Assessing risks of heavy metal toxicity in agricultural soils: Do microbes matter?, Hum. Ecol. Risk Assess., 1999, vol. 5, no. 4, pp. 683–689. https://doi.org/10.1080/10807039.1999.9657732

    Article  CAS  Google Scholar 

  70. Beyer, W.N., Chaney, R.L., and Mulhern, B.M., Heavy metal concentrations in earthworms from soil amended with sewage sludge, J. Environ. Qual., 1982, vol. 11, no. 3, pp. 381–385. https://doi.org/10.2134/jeq1982.00472425001100030012x

    Article  CAS  Google Scholar 

  71. Kolbas, A., Marchand, L., Herzig, R., et al., Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series: Potential uses for biomonitoring of Cu exposure and phytoremediation, Plant Soil, 2014, vol. 376, pp. 377–397. https://doi.org/10.1007/s11104-013-1974-8

    Article  CAS  Google Scholar 

  72. Scott-Fordsmand, J.J., Weeks, J.M., and Hopkin, S.P., Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetida (Oligochaeta: Annelida), using neutral-red retention assay, Environ. Toxicol. Chem., 2000, vol. 19, no. 7, pp. 1774–1780. https://doi.org/10.1002/etc.5620190710

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We extend our gratitude to two anonymous reviewers for their valuable feedback and comments. The research team extends their acknowledgment to Andrei Tchourakov, Sr., for performing the English translation of this article.

Funding

The review was prepared with partial financial support from FONDECYT (Project no. 1200048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Neaman.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The article does not contain any studies involving humans or animals in experiments performed by any of the authors.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dovletyarova, E.A., Dubrovina, T.A., Vorobeichik, E.L. et al. Zinc’s Role in Mitigating Copper Toxicity for Plants and Microorganisms in Industrially Contaminated Soils: A Review. Russ J Ecol 54, 488–499 (2023). https://doi.org/10.1134/S1067413623060048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413623060048

Keywords:

Navigation