Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A seven-Earth-radius helium-burning star inside a 20.5-min detached binary

Abstract

Binary evolution theory predicts that the second common envelope ejection can produce low-mass (0.32–0.36 M) subdwarf B (sdB) stars inside ultrashort-orbital-period binary systems, as their helium cores are ignited under nondegenerate conditions. With the orbital decay driven by gravitational-wave (GW) radiation, the minimum orbital periods of detached sdB binaries could be as short as 20 min. However, only four sdB binaries with orbital periods below an hour have been reported so far, and none of them has an orbital period approaching the above theoretical limit. Here we report the discovery of a 20.5-min-orbital-period ellipsoidal binary, TMTS J052610.43+593445.1, in which the visible star is being tidally deformed by an invisible carbon–oxygen white dwarf companion. The visible component is inferred to be an sdB star with a mass 0.33 M approaching the helium-ignition limit, although a He-core white dwarf cannot be completely ruled out. In particular, the radius of this low-mass sdB star is only 0.066 R, about seven Earth radii. Such a system provides a key clue in mapping the binary evolution scheme from the second common envelope ejection to the formation of AM CVn stars having a helium-star donor. It may also serve as a crucial verification binary of space-borne GW observatories such as LISA and TianQin in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phase-folded RV curve and double-band light curves for J0526.
Fig. 2: Dynamical spectra of J0526 from GTC/OSIRIS and Keck/LRIS observations.
Fig. 3: Broadband SED of J0526.
Fig. 4: Kiel diagram for hot subdwarfs, low-mass WDs and J0526B.
Fig. 5: MRD for MS stars, WDs, hot subdwarfs and J0526B.

Similar content being viewed by others

Data availability

The ZTF g- and r-band photometry can be obtained from the NASA/IPAC Infrared Science Archive (https://irsa.ipac.caltech.edu). The optical and infrared photometric fluxes in the SED can be obtained from the VOSA online tool (http://svo2.cab.inta-csic.es/theory/vosa). The bolometric correction tables can be downloaded from MIST (http://waps.cfa.harvard.edu/MIST/model_grids.html). All light curves, observed and synthetic spectra, RV curve, photometric and synthetic fluxes in the SED, and the stellar/binary evolutionary models used for this work are available from our Zenodo page (https://www.zenodo.org/record/8074854 or https://doi.org/10.5281/zenodo.8074854). Source data are provided with this paper.

Code availability

The codes TLUSTY (v.207) and SYNSPEC (v.53) that were used for generating (non-LTE) model atmospheres and producing synthetic spectra are available at https://www.as.arizona.edu/hubeny, and the services for online spectral analyses (XTGRID) are provided by Astroserver (www.Astroserver.org). The Python package ellc (v.1.8.7), which was used for modelling light curves, can be obtained from https://pypi.org/project/ellc. The sensitivity curve of LISA can be computed using the codes from https://github.com/eXtremeGravityInstitute/LISA_Sensitivity. The software MESA (v.12778) used for stellar evolutionary calculations is available at http://mesastar.org, and the full inlists for evolutionary models used for this work are available from our Zenodo page (https://www.zenodo.org/record/8074854 or https://doi.org/10.5281/zenodo.8074854).

References

  1. Zhang, J.-C. et al. The Tsinghua University-Ma Huateng Telescopes for Survey: overview and performance of the system. Publ. Astron. Soc. Pac. 132, 125001 (2020).

    ADS  Google Scholar 

  2. Lin, J. et al. Minute-cadence observations of the LAMOST fields with the TMTS: I. Methodology of detecting short-period variables and results from the first-year survey. Mon. Not. R. Astron. Soc. 509, 2362–2376 (2022).

    ADS  Google Scholar 

  3. Lin, J. et al. An 18.9 min blue large-amplitude pulsator crossing the ‘Hertzsprung gap’ of hot subdwarfs. Nat. Astron. 7, 223–233 (2023).

    ADS  Google Scholar 

  4. Lin, J. et al. Minute-cadence observations of the LAMOST fields with the TMTS: II. Catalogues of short-period variable stars from the first 2-yr surveys. Mon. Not. R. Astron. Soc. 523, 2172–2192 (2023).

    ADS  Google Scholar 

  5. Bellm, E. C. et al. The Zwicky Transient Facility: system overview, performance, and first results. Publ. Astron. Soc. Pac. 131, 018002 (2019).

    ADS  Google Scholar 

  6. Masci, F. J. et al. The Zwicky Transient Facility: data processing, products, and archive. Publ. Astron. Soc. Pac. 131, 018003 (2019).

    ADS  Google Scholar 

  7. Fan, Y.-F. et al. Rapid instrument exchanging system for the Cassegrain focus of the Lijiang 2.4-m Telescope. Res. Astron. Astrophys. 15, 918 (2015).

    ADS  Google Scholar 

  8. Wang, C.-J. et al. Lijiang 2.4-meter Telescope and its instruments. Res. Astron. Astrophys. 19, 149 (2019).

    ADS  Google Scholar 

  9. Oke, J. B. et al. The Keck Low-Resolution Imaging Spectrometer. Publ. Astron. Soc. Pac. 107, 375 (1995).

    ADS  Google Scholar 

  10. McCarthy, J. K. et al. Blue channel of the Keck low-resolution imaging spectrometer. In Proc. SPIE Conference Series, Optical Astronomical Instrumentation Vol. 3355 (ed. D’Odorico, S.) 81–92 (SPIE, 1998).

  11. Cepa, J. et al. OSIRIS tunable imager and spectrograph for the GTC. Instrument status. In Proc. SPIE Conference Series, Instrument Design and Performance for Optical/Infrared Ground-based Telescopes Vol. 4841 (eds Iye, M. & Moorwood, A. F. M.) 1739–1749 (SPIE, 2003).

  12. Loeb, A. & Gaudi, B. S. Periodic flux variability of stars due to the reflex Doppler effect induced by planetary companions. Astrophys. J. Lett. 588, L117–L120 (2003).

    ADS  Google Scholar 

  13. Zucker, S., Mazeh, T. & Alexander, T. Beaming binaries: a new observational category of photometric binary stars. Astrophys. J. 670, 1326–1330 (2007).

    ADS  Google Scholar 

  14. Ren, L. et al. A systematic search for short-period close white dwarf binary candidates based on Gaia EDR3 Catalog and Zwicky Transient Facility data. Astrophys. J. Suppl. 264, 39 (2023).

    ADS  Google Scholar 

  15. Gentile Fusillo, N. P. et al. A Gaia Data Release 2 catalogue of white dwarfs and a comparison with SDSS. Mon. Not. R. Astron. Soc. 482, 4570–4591 (2019).

    ADS  Google Scholar 

  16. Pelisoli, I. & Vos, J. Gaia Data Release 2 catalogue of extremely low-mass white dwarf candidates. Mon. Not. R. Astron. Soc. 488, 2892–2903 (2019).

    ADS  Google Scholar 

  17. Gentile Fusillo, N. P., Gänsicke, B. T. & Greiss, S. A photometric selection of white dwarf candidates in Sloan Digital Sky Survey Data Release 10. Mon. Not. R. Astron. Soc. 448, 2260–2274 (2015).

    ADS  Google Scholar 

  18. Yi, T. et al. A dynamically discovered and characterized non-accreting neutron star-M dwarf binary candidate. Nat. Astron. 6, 1203–1212 (2022).

    ADS  Google Scholar 

  19. Zheng, L.-L. et al. The nearest neutron star candidate in a binary revealed by optical time-domain surveys. Sci. China Phys. Mech. Astron. 66, 129512 (2023).

  20. Hubeny, I. & Lanz, T. A brief introductory guide to TLUSTY and SYNSPEC. Preprint at arxiv.org/abs/1706.01859 (2017).

  21. Lanz, T. & Hubeny, I. A grid of NLTE line-blanketed model atmospheres of early B-type stars. Astrophys. J. Suppl. 169, 83–104 (2007).

    ADS  Google Scholar 

  22. Gianninas, A., Bergeron, P. & Ruiz, M. T. A spectroscopic survey and analysis of bright, hydrogen-rich white dwarfs. Astrophys. J. 743, 138 (2011).

    ADS  Google Scholar 

  23. Kepler, S. O. et al. White dwarf and subdwarf stars in the Sloan Digital Sky Survey Data Release 14. Mon. Not. R. Astron. Soc. 486, 2169–2183 (2019).

    ADS  Google Scholar 

  24. Napiwotzki, R. et al. The ESO supernovae type Ia progenitor survey (SPY). The radial velocities of 643 DA white dwarfs. Astron. Astrophys. 638, A131 (2020).

    Google Scholar 

  25. Geier, S. The population of hot subdwarf stars studied with Gaia. III. Catalogue of known hot subdwarf stars: Data Release 2. Astron. Astrophys. 635, A193 (2020).

    ADS  Google Scholar 

  26. Lei, Z., Zhao, J., Németh, P. & Zhao, G. Hot subdwarf stars identified in Gaia DR2 with spectra of LAMOST DR6 and DR7. I. Single-lined spectra. Astrophys. J. 889, 117 (2020).

    ADS  Google Scholar 

  27. Luo, Y., Németh, P., Wang, K., Wang, X. & Han, Z. Hot subdwarf atmospheric parameters, kinematics, and origins based on 1587 hot subdwarf stars observed in Gaia DR2 and LAMOST DR7. Astrophys. J. Suppl. 256, 28 (2021).

    ADS  Google Scholar 

  28. Edelmann, H. et al. Spectral analysis of sdB stars from the Hamburg Quasar Survey. Astron. Astrophys. 400, 939–950 (2003).

    ADS  Google Scholar 

  29. Németh, P., Kawka, A. & Vennes, S. A selection of hot subluminous stars in the GALEX survey. II. Subdwarf atmospheric parameters. Mon. Not. R. Astron. Soc. 427, 2180–2211 (2012).

    ADS  Google Scholar 

  30. Gaia Collaboration. Gaia Data Release 3: Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).

  31. Martin, D. C. et al. The Galaxy Evolution Explorer: a space ultraviolet survey mission. Astrophys. J. Lett. 619, L1–L6 (2005).

    ADS  Google Scholar 

  32. Green, G. M., Schlafly, E., Zucker, C., Speagle, J. S. & Finkbeiner, D. A 3D dust map based on Gaia, Pan-STARRS 1, and 2MASS. Astrophys. J. 887, 93 (2019).

    ADS  Google Scholar 

  33. Panei, J. A., Althaus, L. G., Chen, X. & Han, Z. Full evolution of low-mass white dwarfs with helium and oxygen cores. Mon. Not. R. Astron. Soc. 382, 779–792 (2007).

    ADS  Google Scholar 

  34. Althaus, L. G., Miller Bertolami, M. M. & Córsico, A. H. New evolutionary sequences for extremely low-mass white dwarfs. Homogeneous mass and age determinations and asteroseismic prospects. Astron. Astrophys. 557, A19 (2013).

    ADS  Google Scholar 

  35. Istrate, A. G. et al. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing. Astron. Astrophys. 595, A35 (2016).

    Google Scholar 

  36. Maxted, P. F. L. ellc: a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets. Astron. Astrophys. 591, A111 (2016).

    ADS  Google Scholar 

  37. Claret, A. et al. Gravity and limb-darkening coefficients for compact stars: DA, DB, and DBA eclipsing white dwarfs. Astron. Astrophys. 634, A93 (2020).

    Google Scholar 

  38. Parsons, S. G. et al. Testing the white dwarf mass–radius relationship with eclipsing binaries. Mon. Not. R. Astron. Soc. 470, 4473–4492 (2017).

    ADS  Google Scholar 

  39. Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint at arxiv.org/abs/1702.00786 (2017).

  40. Brown, W. R. et al. The ELM Survey. VIII. Ninety-eight double white dwarf binaries. Astrophys. J. 889, 49 (2020).

    ADS  Google Scholar 

  41. Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R. & Ivanova, N. The origin of subdwarf B stars – I. The formation channels. Mon. Not. R. Astron. Soc. 336, 449–466 (2002).

    ADS  Google Scholar 

  42. Han, Z., Podsiadlowski, P., Maxted, P. F. L. & Marsh, T. R. The origin of subdwarf B stars - II. Mon. Not. R. Astron. Soc. 341, 669–691 (2003).

    ADS  Google Scholar 

  43. Wu, Y., Chen, X., Li, Z. & Han, Z. Formation of hot subdwarf B stars with neutron star components. Astron. Astrophys. 618, A14 (2018).

    ADS  Google Scholar 

  44. Yungelson, L. R. Evolution of low-mass helium stars in semidetached binaries. Astron. Lett. 34, 620–634 (2008).

    ADS  Google Scholar 

  45. Brooks, J., Bildsten, L., Marchant, P. & Paxton, B. AM Canum Venaticorum progenitors with helium star donors and the resultant explosions. Astrophys. J. 807, 74 (2015).

    ADS  Google Scholar 

  46. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): pulsating variable stars, rotation, convective boundaries, and energy conservation. Astrophys. J. Suppl. 243, 10 (2019).

    ADS  Google Scholar 

  47. Ge, H., Webbink, R. F., Chen, X. & Han, Z. Adiabatic mass loss in binary stars. II. From zero-age main sequence to the base of the giant branch. Astrophys. J. 812, 40 (2015).

    ADS  Google Scholar 

  48. Chen, J. & Kipping, D. Probabilistic forecasting of the masses and radii of other worlds. Astrophys. J. 834, 17 (2017).

    ADS  Google Scholar 

  49. Lin, J., Yan, Z., Han, Z. & Yu, W. The relation between outburst rate and orbital period in low-mass X-ray binary transients. Astrophys. J. 870, 126 (2019).

    ADS  Google Scholar 

  50. Dieterich, S. B. et al. The solar neighborhood. XXXII. The hydrogen burning limit. Astron. J. 147, 94 (2014).

    ADS  Google Scholar 

  51. Rappaport, S., Vanderburg, A., Schwab, J. & Nelson, L. Minimum orbital periods of H-rich bodies. Astrophys. J. 913, 118 (2021).

    ADS  Google Scholar 

  52. Xiong, H., Chen, X., Podsiadlowski, P., Li, Y. & Han, Z. Subdwarf B stars from the common envelope ejection channel. Astron. Astrophys. 599, A54 (2017).

    ADS  Google Scholar 

  53. Chen, X., Han, Z., Deca, J. & Podsiadlowski, P. The orbital periods of subdwarf B binaries produced by the first stable Roche Lobe overflow channel. Mon. Not. R. Astron. Soc. 434, 186–193 (2013).

    ADS  Google Scholar 

  54. Chen, X. & Han, Z. Low- and intermediate-mass close binary evolution and the initial-final mass relation – III. Conservative case with convective overshooting and non-conservative case without overshooting. Mon. Not. R. Astron. Soc. 341, 662–668 (2003).

    ADS  Google Scholar 

  55. Nelemans, G., Portegies Zwart, S. F., Verbunt, F. & Yungelson, L. R. Population synthesis for double white dwarfs. II. Semi-detached systems: AM CVn stars. Astron. Astrophys. 368, 939–949 (2001).

    ADS  Google Scholar 

  56. Solheim, J. E. AM CVn stars: status and challenges. Publ. Astron. Soc. Pac. 122, 1133 (2010).

    ADS  Google Scholar 

  57. Blackman, J. W. et al. A Jovian analogue orbiting a white dwarf star. Nature 598, 272–275 (2021).

    ADS  Google Scholar 

  58. Ruderman, M. A. & Shaham, J. Disruption of light He companions in accreting neutron star binaries. Astrophys. J. 289, 244–246 (1985).

    ADS  Google Scholar 

  59. Ivezić, Ž. et al. LSST: from science drivers to reference design and anticipated data products. Astrophys. J. 873, 111 (2019).

    ADS  Google Scholar 

  60. Wang, T. et al. Science with the 2.5-meter Wide Field Survey Telescope (WFST). Sci. China Phys. Mech. Astron. 66, 109512 (2023).

    ADS  Google Scholar 

  61. Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Gravity 33, 035010 (2016).

    ADS  Google Scholar 

  62. VanderPlas, J. T. Understanding the Lomb–Scargle periodogram. Astrophys. J. Suppl. 236, 16 (2018).

    ADS  Google Scholar 

  63. Gaia Collaboration. et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  64. Green, G. M. dustmaps: a Python interface for maps of interstellar dust. J. Open Source Softw. 3, 695 (2018).

    ADS  Google Scholar 

  65. Perley, D. A. Fully automated reduction of longslit spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory. Publ. Astron. Soc. Pac. 131, 084503 (2019).

    ADS  Google Scholar 

  66. Eadie, G. M. et al. Practical guidance for Bayesian inference in astronomy. Preprint at arXiv.org/abs/2302.04703 (2023).

  67. Heber, U. Hot subdwarf stars. Annu. Rev. Astron. Astrophys. 47, 211–251 (2009).

    ADS  Google Scholar 

  68. O’Toole, S. J. & Heber, U. Abundance studies of sdB stars using UV echelle HST/STIS spectroscopy. Astron. Astrophys. 452, 579–590 (2006).

    ADS  Google Scholar 

  69. Geier, S. et al. The hot subdwarf B + white dwarf binary KPD 1930+2752. A supernova type Ia progenitor candidate. Astron. Astrophys. 464, 299–307 (2007).

    ADS  Google Scholar 

  70. Wang, K. et al. Extremely low-mass white dwarf stars observed in Gaia DR2 and LAMOST DR8. Astrophys. J. 936, 5 (2022).

    ADS  Google Scholar 

  71. Choi, J. et al. MESA Isochrones and Stellar Tracks (MIST). I. Solar-scaled models. Astrophys. J. 823, 102 (2016).

    ADS  Google Scholar 

  72. Dotter, A. MESA Isochrones and Stellar Tracks (MIST) 0: methods for the construction of stellar isochrones. Astrophys. J. Suppl. 222, 8 (2016).

    ADS  Google Scholar 

  73. Roming, P. W. A. et al. The Swift Ultra-Violet/Optical Telescope. Space Sci. Rev. 120, 95–142 (2005).

    ADS  Google Scholar 

  74. Gaia Collaboration. et al. The Gaia mission. Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  75. Kaiser, N. et al. Pan-STARRS: a large synoptic survey telescope array. In Proc. SPIE Conference Series, Survey and Other Telescope Technologies and Discoveries Vol. 4836 (eds Tyson, J. A. & Wolff, S.) 154–164 (SPIE, 2002).

  76. Chambers, K. C. et al. The Pan-STARRS1 surveys. Preprint at arXiv.org/abs/1612.05560 (2016).

  77. Wright, E. L. et al. The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868–1881 (2010).

    ADS  Google Scholar 

  78. Cutri, R. M. et al. VizieR Online Data Catalog: AllWISE Data Release (Cutri+ 2013). VizieR Online Data Catalog II/328 (2021).

  79. Bayo, A. et al. VOSA: virtual observatory SED analyzer. An application to the Collinder 69 open cluster. Astron. Astrophys. 492, 277–287 (2008).

    ADS  Google Scholar 

  80. Werner, K., Dreizler, S. & Rauch, T. TMAP: Tübingen NLTE Model-Atmosphere Package. Astrophysics Source Code Library, record ascl:1212.015 (2012).

  81. Fitzpatrick, E. L. Correcting for the effects of interstellar extinction. Publ. Astron. Soc. Pac. 111, 63–75 (1999).

    ADS  Google Scholar 

  82. Indebetouw, R. et al. The wavelength dependence of interstellar extinction from 1.25 to 8.0 μm using GLIMPSE data. Astrophys. J. 619, 931–938 (2005).

    ADS  Google Scholar 

  83. Rodrigo, C., Solano, E. & Bayo, A. SVO Filter Profile Service Version 1.0. IVOA Working Draft 15 October 2012 (2012).

  84. Kolb, U. Extreme Environment Astrophysics (Cambridge Univ. Press, 2010).

  85. Paczyński, B. Evolutionary processes in close binary systems. Annu. Rev. Astron. Astrophys. 9, 183 (1971).

    ADS  Google Scholar 

  86. Schönrich, R. Galactic rotation and solar motion from stellar kinematics. Mon. Not. R. Astron. Soc. 427, 274–287 (2012).

    ADS  Google Scholar 

  87. Schönrich, R., Binney, J. & Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 403, 1829–1833 (2010).

    ADS  Google Scholar 

  88. Pauli, E. M., Napiwotzki, R., Heber, U., Altmann, M. & Odenkirchen, M. 3D kinematics of white dwarfs from the SPY project. II. Astron. Astrophys. 447, 173–184 (2006).

    ADS  Google Scholar 

  89. Kupfer, T. et al. LISA Galactic binaries with astrometry from Gaia DR3. Preprint at arXiv.org/abs/2302.12719 (2023).

  90. Blanchet, L. Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17, 2 (2014).

    ADS  Google Scholar 

  91. Robson, T., Cornish, N. J. & Liu, C. The construction and use of LISA sensitivity curves. Class. Quantum Gravity 36, 105011 (2019).

    ADS  Google Scholar 

  92. Huang, S.-J. et al. Science with the TianQin Observatory: preliminary results on Galactic double white dwarf binaries. Phys. Rev. D 102, 063021 (2020).

    ADS  Google Scholar 

  93. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA). Astrophys. J. Suppl. 192, 3 (2011).

    ADS  Google Scholar 

  94. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): planets, oscillations, rotation, and massive stars. Astrophys. J. Suppl. 208, 4 (2013).

    ADS  Google Scholar 

  95. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): binaries, pulsations, and explosions. Astrophys. J. Suppl. 220, 15 (2015).

    ADS  Google Scholar 

  96. Paxton, B. et al. Modules for Experiments in Stellar Astrophysics (MESA): convective boundaries, element diffusion, and massive star explosions. Astrophys. J. Suppl. 234, 34 (2018).

    ADS  Google Scholar 

  97. Iglesias, C. A. & Rogers, F. J. Radiative opacities for carbon- and oxygen-rich mixtures. Astrophys. J. 412, 752 (1993).

    ADS  Google Scholar 

  98. Iglesias, C. A. & Rogers, F. J. Updated opal opacities. Astrophys. J. 464, 943 (1996).

    ADS  Google Scholar 

  99. Landau, L. D. & Lifshitz, E. M. The Classical Theory of Fields (Pergamon, 1975).

  100. Kato, M. & Hachisu, I. Mass accumulation efficiency in helium shell flashes for various white dwarf masses. Astrophys. J. Lett. 613, L129–L132 (2004).

    ADS  Google Scholar 

  101. Wang, B., Meng, X., Chen, X. & Han, Z. The helium star donor channel for the progenitors of type Ia supernovae. Mon. Not. R. Astron. Soc. 395, 847–854 (2009).

    ADS  Google Scholar 

  102. Wu, C., Liu, D., Wang, X. & Wang, B. The effect of aspherical stellar wind of giant stars on the symbiotic channel of type Ia supernovae. Mon. Not. R. Astron. Soc. 503, 4061–4074 (2021).

    ADS  Google Scholar 

  103. Wang, B., Podsiadlowski, P. & Han, Z. He-accreting carbon-oxygen white dwarfs and type Ia supernovae. Mon. Not. R. Astron. Soc. 472, 1593–1599 (2017).

    ADS  Google Scholar 

  104. Wu, C., Wang, B., Liu, D. & Han, Z. Mass retention efficiencies of He accretion onto carbon-oxygen white dwarfs and type Ia supernovae. Astron. Astrophys. 604, A31 (2017).

    ADS  Google Scholar 

  105. Dorman, B., Rood, R. T. & O’Connell, R. W. Ultraviolet radiation from evolved stellar populations. I. Models. Astrophys. J. 419, 596 (1993).

    ADS  Google Scholar 

  106. Schaffenroth, V., Pelisoli, I., Barlow, B. N., Geier, S. & Kupfer, T. Hot subdwarfs in close binaries observed from space. I. Orbital, atmospheric, and absolute parameters, and the nature of their companions. Astron. Astrophys. 666, A182 (2022).

    ADS  Google Scholar 

  107. Burdge, K. B. et al. A systematic search of Zwicky Transient Facility data for ultracompact binary LISA-detectable gravitational-wave sources. Astrophys. J. 905, 32 (2020).

    ADS  Google Scholar 

  108. Kupfer, T. et al. The first ultracompact Roche lobe-filling hot subdwarf binary. Astrophys. J. 891, 45 (2020).

    ADS  Google Scholar 

  109. Kupfer, T. et al. A new class of Roche lobe-filling hot subdwarf binaries. Astrophys. J. Lett. 898, L25 (2020).

    ADS  Google Scholar 

  110. Geier, S. et al. A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae. Astron. Astrophys. 554, A54 (2013).

    Google Scholar 

  111. Pelisoli, I. et al. A hot subdwarf-white dwarf super-Chandrasekhar candidate supernova Ia progenitor. Nat. Astron. 5, 1052–1061 (2021).

    ADS  Google Scholar 

  112. Kupfer, T. et al. LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc. 480, 302–309 (2018).

    ADS  Google Scholar 

  113. Finch, E. et al. Identifying LISA verification binaries amongst the Galactic population of double white dwarfs. Mon. Not. R. Astron Soc. 522, 5358–5373 (2023).

  114. Burdge, K. B. et al. General relativistic orbital decay in a seven-minute-orbital-period eclipsing binary system. Nature 571, 528–531 (2019).

    ADS  Google Scholar 

  115. Burdge, K. B. et al. Orbital decay in a 20 minute orbital period detached binary with a hydrogen-poor low-mass white dwarf. Astrophys. J. Lett. 886, L12 (2019).

    ADS  Google Scholar 

  116. Burdge, K. B. et al. An 8.8 minute orbital period eclipsing detached double white dwarf binary. Astrophys. J. Lett. 905, L7 (2020).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the staff of the 10.4 m GTC, Keck I 10 m telescope, LJT and Swift/UVOT. The work of X.W. is supported by the National Natural Science Foundation of China (NSFC; Grant Numbers 12033003, 12288102 and 11633002), the Ma Huateng Foundation, the New Cornerstone Science Foundation through the XPLORER PRIZE, China Manned-Spaced Project (CMS-CSST-2021-A12) and the Scholar Program of the Beijing Academy of Science and Technology (DZ:BS202002). J. Lin is supported by the Cyrus Chun Ying Tang Foundations. C.W. is supported by the NSFC (Grant Number 12003013) and the Yunnan Fundamental Research Projects (Grant Number 202301AU070039). C.W., Z.H., X.C., Jujia Zhang and Y.C. are supported by International Centre of Supernovae, Yunnan Key Laboratory (Grant Number 202302AN360001). P.N. acknowledges support from the Grant Agency of the Czech Republic (GAČR 22-34467S). The Astronomical Institute in Ondřejov is supported by project RVO:67985815. N.E.-R. acknowledges partial support from the Research Projects of National Relevance (PRIN) for 2017 as funded by the Italian Ministry of Education, University and Research (MIUR; Grant Number 20179ZF5KS, The new frontier of the Multi-Messenger Astrophysics: follow-up of electromagnetic transient counterparts of gravitational wave sources), from the Italian National Institute for Astrophysics (INAF) through PRIN-INAF 2022 (Shedding light on the nature of gap transients: from the observations to the models), from the Spanish Ministry of Science, Innovation and Universities (Grant Number PID2019-108709GB-I00) and from the European Regional Development Fund. I.S. is supported by funding from MIUR through PRIN 2017 (Grant Number 20179ZF5KS) and PRIN-INAF 2022 (Shedding light on the nature of gap transients: from the observations to the models) and acknowledges the support of the doctoral grant funded by Istituto Nazionale di Astrofisica through the University of Padova and MIUR. A.V.F.’s group at the University of California, Berkeley, has received financial assistance from the Christopher R. Redlich Fund, Alan Eustace (W.Z. is a Eustace Specialist in Astronomy), Frank and Kathleen Wood (T.G.B. is a Wood Specialist in Astronomy), Gary and Cynthia Bengier, Clark and Sharon Winslow, and Sanford Robertson (Y.Y. is a Bengier-Winslow-Robertson Postdoctoral Fellow), and many other donors. This research is based on observations made with the GTC, installed at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias on the island of La Palma. This research is based on data obtained with the instrument OSIRIS, which was built by a consortium led by the Instituto de Astrofísica de Canarias in collaboration with the Instituto de Astronomía of the Universidad Nacional Autónoma de Mexico. OSIRIS was funded by GRANTECAN and the National Plan of Astronomy and Astrophysics of the Spanish Government. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration (NASA). The observatory was made possible by the generous financial support of the W. M. Keck Foundation. We acknowledge the target-of-opportunity observations supported by the Swift Mission Operations Center. This research has used the services of www.Astroserver.org under references T4JRRH and Y75AKG and was based in part on observations obtained with the Samuel Oschin 48 inch Telescope at the Palomar Observatory as part of the ZTF project. ZTF is supported by the US National Science Foundation (NSF) under grant AST-1440341 and a collaboration including Caltech, Infrared Processing and Analysis Center (IPAC), the Weizmann Institute for Science, the Oskar Klein Center at Stockholm University, the University of Maryland, the University of Washington, Deutsches Elektronen-Synchrotron and Humboldt University, Los Alamos National Laboratory, the TANGO Consortium of Taiwan, the University of Wisconsin at Milwaukee and Lawrence Berkeley National Laboratory. Operations were conducted by COO, IPAC and the University of Wisconsin. This work has made use of data from the European Space Agency’s Gaia mission (https://www.cosmos.esa.int/gaia) processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium). Funding for DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes (the Max Planck Institute for Astronomy, Heidelberg, and the Max Planck Institute for Extraterrestrial Physics, Garching), Johns Hopkins University, Durham University, the University of Edinburgh, Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, NASA (under Grant Number NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate), NSF (Grant Number AST-1238877), the University of Maryland, Eotvos Lorand University, Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. This publication makes use of data products from the WISE, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology as funded by NASA. This publication makes use of VOSA, developed under the Spanish Virtual Observatory (https://svo.cab.inta-csic.es) project funded by MCIN/AEI/10.13039/501100011033/ through Grant Number PID2020-112949GB-I00. VOSA was partially updated using funding from the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement Number 776403, EXOPLANETS-A).

Author information

Authors and Affiliations

Authors

Contributions

J. Lin, C.W., H.X. and X.W. drafted the paper. Z.H. and A.V.F. edited the paper in detail. P.N., N.E.-R., X.C., Y.C. and S.G. also helped with the paper. X.W. is the principal investigator of TMTS and led the discussions. J. Lin discovered this source by analysing a large volume of data from TMTS observations and performed a detailed analysis of the spectroscopy, SED, orbital dynamic and light curves. C.W. computed the stellar and binary evolution models for low-mass sdB stars. H.X. provided some key ideas for these models. P.N. determined the atmospheric parameters from the GTC/OSIRIS spectra and computed RVs from both the GTC/OSIRIS and Keck I/LRIS spectra. J. Li and Q.X. helped with the analysis of SED and light curves. The GTC/OSIRIS spectra were provided and reduced by N.E.-R. and I.S. A.V.F., T.G.B., Y.Y. and W.Z. obtained and reduced the Keck I data. Jujia Zhang obtained and reduced the high-cadence observations of the LJT. S.G. computed the Galactic orbit. J. Liu reduced and analysed the observations made by Swift/UVOT. S.Y., Y.C., J.G., D.X. and G.L. assisted in the spectral observations and analysis. J. Lin, C.W., H.X., X.W., P.N., Z.H., J. Li, X.C., J.G., Q.X. and Z.L. contributed to beneficial discussions. X.W., Jicheng Zhang, J.M., G.X. and J. Lin contributed to the building of the TMTS and developing of its pipeline and database. G.X., J.M., J.G., Q.X., Q.L., F.G., L.C. and W.L. contributed to the operations and data products of TMTS.

Corresponding author

Correspondence to Xiaofeng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Astronomy thanks Kevin Burdge and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 TMTS light curve and Lomb-Scargle periodogram for J0526.

Upper panel: the TMTS L-band light curve over a 12 hr night on 18 December 2020. The magnitudes are presented as mean values ± 1σ. Middle panel: a 3000 s subset of the TMTS L-band light curve. The solid red line represents the best-fit sinusoidal model with a period of 10.3 min. Lower panel: the Lomb-Scargle periodogram (LSP) computed from the TMTS light curve. The vertical dashed line indicates the frequency corresponding to maximum power (\({{{{\rm{f}}}}}_{\max }\)). The purple dot-dashed line represents the confidence level of 0.1%, and the red arrow shows the frequency corresponding to the orbital period (that is, \({{{{\rm{f}}}}}_{\max }\)/2).

Extended Data Fig. 2 Relation between He abundance and effective temperature for hot subdwarfs.

All atmospheric parameters of hot subdwarfs are taken from reference25. The purple dashed line and green dotted-dash line represent the correlation for the He-rich sequence28 and the He-weak sequence29, respectively.

Extended Data Fig. 3 The characteristic strains of J0526 accompanied with dozens of verification/detectable binaries of GWs.

The characteristic strains were calculated from the component masses and distances provided from reference113. The blue dashed line and red dotted-dash line represent the detection sensitivity curves from LISA91 and TianQin92, respectively. The LISA sensitivity curve here includes the instrumental noise the foreground confusion noise, while the TianQin sensitivity curve includes only the instrumental noise. The error bars represent 68% credible intervals.

Extended Data Fig. 4 Binary evolution models for extremely-short-orbital-period sdB binaries.

Two models are differentiated owing to the different core masses of sdB stars. Mass transfers are expected to begin at around 14 and 17 min for Msd = 0.33 M and Msd = 0.36 M, respectively. The red arrows denote the direction of evolution.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Source data

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Wu, C., Xiong, H. et al. A seven-Earth-radius helium-burning star inside a 20.5-min detached binary. Nat Astron 8, 491–503 (2024). https://doi.org/10.1038/s41550-023-02188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41550-023-02188-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing