Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light

Abstract

Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants. All these photocatalysts require high-energy light for excitation, and their oxidizing power has not been fully exploited due to energy dissipation before reaching the photoactive state. Here we demonstrate that the complex [Mn(dgpy)2]4+, based on Earth-abundant manganese and the tridentate 2,6-diguanidylpyridine ligand (dgpy), evolves to a luminescent doublet ligand-to-metal charge transfer (2LMCT) excited state (1,435 nm, 0.86 eV) with a lifetime of 1.6 ns after excitation with low-energy near-infrared light. This 2LMCT state oxidizes naphthalene to its radical cation. Substrates with extremely high oxidation potentials up to 2.4 V enable the [Mn(dgpy)2]4+ photoreduction via a high-energy quartet 4LMCT excited state with a lifetime of 0.78 ps, proceeding via static quenching by the solvent. This process minimizes free energy losses and harnesses the full photooxidizing power, and thus allows oxidation of nitriles and benzene using Earth-abundant elements and low-energy light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Steady-state UV/visible/near-infrared absorption and emission spectroscopy of [Mn(dgpy)2][PF6]4.
Fig. 2: Femtosecond TA investigations of [Mn(dgpy)2][PF6]4 in Ar-saturated CH3CN revealing the initial formation of the 4LMCT state followed by the slow ISC to the 2LMCT state.
Fig. 3: Quantum chemical calculations of excited states of [Mn(dgpy)2]4+ and the products of the photoinduced electron transfer reaction.
Fig. 4: Jablonski diagram and electron configurations of the involved excited states and redox states.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published Article or its Supplementary Information files, which include irradiations under various conditions (light sources, substrates), luminescence and TA spectroscopic data and conductivity data. Raw data for the figures and supplementary figures and Cartesian coordinates for the optimized structures are also available from Figshare (https://doi.org/10.6084/m9.figshare.24886530). Source data are provided with this paper.

References

  1. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, Y. Z., Persson, P., Sundström, V. & Wärnmark, K. Fe N-heterocyclic carbene complexes as promising photosensitizers. Acc. Chem. Res. 49, 1477–1485 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Larsen, C. B. & Wenger, O. S. Photoredox catalysis with metal complexes made from Earth-abundant elements. Chem. Eur. J. 24, 2039–2058 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Wenger, O. S. Photoactive complexes with Earth-abundant metals. J. Am. Chem. Soc. 140, 13522–13533 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Otto, S. et al. Understanding and exploiting long-lived near-infrared emission of a molecular ruby. Coord. Chem. Rev. 359, 102–111 (2018).

    Article  CAS  Google Scholar 

  7. Förster, C. & Heinze, K. Photophysics and photochemistry with Earth-abundant metals – fundamentals and concepts. Chem. Soc. Rev. 49, 1057–1070 (2020).

    Article  PubMed  Google Scholar 

  8. Dierks, P., Vukadinovic, Y. & Bauer, M. Photoactive iron complexes: more sustainable, but still a challenge. Inorg. Chem. Front. 9, 206–220 (2022).

    Article  CAS  Google Scholar 

  9. Kitzmann, W. R., Ramanan, C., Naumann, R. & Heinze, K. Molecular ruby: exploring the excited state landscape. Dalton Trans. 51, 6519–6525 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Kitzmann, W. R., Moll, J. & Heinze, K. Spin-flip luminescence. Photochem. Photobiol. Sci. 21, 1309–1331 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Sinha, N. & Wenger, O. S. Photoactive metal-to-ligand charge transfer excited states in 3d6 complexes with Cr0, MnI, FeII, and CoIII. J. Am. Chem. Soc. 45, 4903–4920 (2023).

    Article  Google Scholar 

  12. Sharma, N. et al. Long-lived photoexcited state of a Mn(IV)-oxo complex binding scandium ions that is capable of hydroxylating benzene. J. Am. Chem. Soc. 140, 8405–8409 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Tzirakis, M. D., Lykakis, I. N. & Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev. 38, 2609–2621 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, D. et al. Luminescent tungsten(vi) complexes as photocatalysts for light-driven C–C and C–B bond formation reactions. Chem. Sci. 11, 6370–6382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang, K., Chang, L., An, Q., Wang, X. & Zuo, Z. Dehydroxymethylation of alcohols enabled by cerium photocatalysis. J. Am. Chem. Soc. 141, 10556–10564 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, Q. et al. Photocatalytic C–H activation and the subtle role of chlorine radical complexation in reactivity. Science 372, 847–852 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Yatham, V. R., Bellotti, P. & König, B. Decarboxylative hydrazination of unactivated carboxylic acids by cerium photocatalysis. Chem. Commun. 55, 3489–3492 (2019).

    Article  CAS  Google Scholar 

  18. West, J. G., Bedell, T. A. & Sorensen, E. J. The uranyl cation as a visible-light photocatalyst for C(sp3)–H fluorination. Angew. Chem. Int. Ed. 55, 8923–8927 (2016).

    Article  CAS  Google Scholar 

  19. Abderrazak, Y., Bhattacharyya, A. & Reiser, O. Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. 60, 21100–21115 (2021).

    Article  CAS  Google Scholar 

  20. Zhang, Y., Petersen, J. L. & Milsmann, C. A luminescent zirconium(IV) complex as a molecular photosensitizer for visible light photoredox catalysis. J. Am. Chem. Soc. 138, 13115–13118 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Y., Lee, T. S., Petersen, J. L. & Milsmann, C. A zirconium photosensitizer with a long-lived excited state: mechanistic insight into photoinduced single-electron transfer. J. Am. Chem. Soc. 140, 5934–5947 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Pal, A. K., Li, C., Hanan, G. S. & Zysman-Colman, E. Blue-emissive cobalt(III) complexes and their use in the photocatalytic trifluoromethylation of polycyclic aromatic hydrocarbons. Angew. Chem. Int. Ed. 57, 8027–8031 (2018).

    Article  CAS  Google Scholar 

  23. Chábera, P. et al. A low-spin Fe(iii) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543, 695–699 (2017).

    Article  PubMed  ADS  Google Scholar 

  24. Kjær, K. S. et al. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 363, 249–253 (2019).

    Article  PubMed  ADS  Google Scholar 

  25. Rosemann, N. W. et al. Tracing the full bimolecular photocycle of iron(III)−carbene light harvesters in electron-donating solvents. J. Am. Chem. Soc. 142, 8565–8569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aydogan, A. et al. Accessing photoredox transformations with an iron(III) photosensitizer and green light. J. Am. Chem. Soc. 143, 15661–15673 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Steube, J. et al. Janus-type emission of a cyclometalated iron(iii) complex. Nat. Chem. 45, 468–474 (2023).

    Article  Google Scholar 

  28. Stevenson, S. M., Shores, M. P. & Ferreira, E. M. Photooxidizing chromium catalysts for promoting radical cation cycloadditions. Angew. Chem. Int. Ed. 54, 6506–6510 (2015).

    Article  CAS  Google Scholar 

  29. Sittel, S., Naumann, R. & Heinze, K. Molecular rubies in photoredox catalysis. Front. Chem. 10, 887439 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. Bürgin, T. H., Glaser, F. & Wenger, O. S. Shedding light on the oxidizing properties of spin-flip excited states in a CrIII polypyridine complex and their use in photoredox catalysis. J. Am. Chem. Soc. 144, 14181–14194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sittel, S. et al. Visible-light induced fixation of SO2 into organic molecules with polypyridine chromium(III) complexes. Chem. Cat. Chem. 15, e202201562 (2023).

    CAS  Google Scholar 

  32. Li, C., Kong, X. Y., Tan, Z. H., Yang, C. T. & Soo, H. S. Emergence of ligand-to-metal charge transfer in homogeneous photocatalysis and photosensitization. Chem. Phys. Rev. 3, 021303 (2022).

    Article  CAS  ADS  Google Scholar 

  33. Förster, C. & Heinze, K. Bimolecular reactivity of 3d metal-centered excited states (Cr, Mn, Fe, Co). Chem. Phys. Rev. 3, 041302 (2022).

    Article  Google Scholar 

  34. Connelly, N. G. & Geiger, W. E. Chemical redox agents for organometallic chemistry. Chem. Rev. 96, 877–910 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, D. & Teets, T. S. Strategies for accessing photosensitizers with extreme redox potentials. Chem. Phys. Rev. 3, 021302 (2022).

    Article  CAS  Google Scholar 

  36. Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Tlili, A. & Lakhdar, S. Acridinium salts and cyanoarenes as powerful photocatalysts: opportunities in organic synthesis. Angew. Chem. Int. Ed. 60, 19526–19549 (2021).

    Article  CAS  Google Scholar 

  38. Natarajan, P. & König, B. Excited-state 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ*) initiated organic synthetic transformations under visible-light irradiation. Eur. J. Org. Chem. 2021, 2145–2161 (2021).

  39. Huang, H. & Lambert, T. H. Electrophotocatalytic SNAr reactions of unactivated aryl fluorides at ambient temperature and without base. Angew. Chem. Int. Ed. 59, 658–662 (2020).

    Article  CAS  Google Scholar 

  40. Huang, H. et al. Electrophotocatalysis with a trisaminocyclopropenium radical dication. Angew. Chem. Int. Ed. 58, 13318–13322 (2019).

    Article  CAS  Google Scholar 

  41. Huang, H. & Lambert, T. H. Electrophotocatalytic acetoxyhydroxylation of aryl olefins. J. Am. Chem. Soc. 143, 7247–7252 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cotic, A. et al. Anti-dissipative strategies toward more efficient solar energy conversion. J. Am. Chem. Soc. 145, 5163–5173 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Penfold, T. J., Gindensperger, E., Daniel, C. & Marian, C. M. Spin-vibronic mechanism for intersystem crossing. Chem. Rev. 118, 6975–7025 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Auböck, G. & Chergui, M. Sub-50-fs photoinduced spin crossover in Fe(bpy3)2+. Nat. Chem. 7, 629–633 (2015).

    Article  PubMed  Google Scholar 

  45. Juban, E. A. & McCusker, J. K. Ultrafast dynamics of 2E state formation in Cr(acac)3. J. Am. Chem. Soc. 127, 6857–6865 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, C. et al. Efficient triplet-triplet annihilation upconversion sensitized by a chromium(III) complex via an underexplored energy transfer mechanism. Angew. Chem. Int. Ed. 61, e202202238 (2022).

    Article  CAS  ADS  Google Scholar 

  47. Dose, E. V., Hoselton, M. A., Sutin, N., Tweedle, M. F. & Wilson, L. J. Dynamics of intersystem crossing processes in solution for six-coordinate d5, d6, and d7 spin-equilibrium metal complexes of iron(III), iron(II), and cobalt(II). J. Am. Chem. Soc. 100, 1141–1147 (1978).

    Article  CAS  Google Scholar 

  48. Siddique, Z. A., Yamamoto, Y., Ohno, T. & Nozaki, K. Structure-dependent photophysical properties of singlet and triplet metal-to-ligand charge transfer states in copper(I) bis(diimine) compounds. Inorg. Chem. 42, 6366–6378 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Iwamura, M., Takeuchi, S. & Tahara, T. Real-time observation of the photoinduced structural change of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) by femtosecond fluorescence spectroscopy: a realistic potential curve of the Jahn–Teller distortion. J. Am. Chem. Soc. 129, 5248–5256 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Shaw, G. B. et al. Ultrafast structural rearrangements in the MLCT excited state for copper(I) bis-phenanthrolines in solution. J. Am. Chem. Soc. 129, 2147–2160 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Gonçalves, P. J. De, Boni, L., Borissevitch, I. E. & Zílio, S. C. Excited state dynamics of meso-tetra(sulphonatophenyl) metalloporphyrins. J. Phys. Chem. A 112, 6522–6526 (2008).

    Article  PubMed  Google Scholar 

  52. Dorn, M. et al. A vanadium(III) complex with blue and NIR-II spin-flip luminescence in solution. J. Am. Chem. Soc. 142, 7947–7955 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Antolini, C. et al. Photochemical and photophysical dynamics of the aqueous ferrate(VI) ion. J. Am. Chem. Soc. 144, 22514–22527 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. East, N. R., Förster, C., Carrella, L. M., Rentschler, E. & Heinze, K. The full d3–d5 redox series of mononuclear manganese complexes: geometries and electronic structures of [Mn(dgpy)2]n+. Inorg. Chem. 61, 14616–14625 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Holleman, A. F. Lehrbuch der Anorganischen Chemie 101 edn (eds Wiberg E. & Wiberg N.) (Walter de Gruyter Verlag, 1995).

    Google Scholar 

  56. Troian-Gautier, L. et al. Halide photoredox chemistry. Chem. Rev. 119, 4628–4683 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Ward, W. M., Farnum, B. H., Siegler, M. & Meyer, G. J. Chloride ion-pairing with Ru(II) polypyridyl compounds in dichloromethane. J. Phys. Chem. A 117, 8883–8894 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Li, P., Deetz, A. M., Hu, J., Meyer, G. J. & Hu, K. Chloride oxidation by one- or two-photon excitation of N‑phenylphenothiazine. J. Am. Chem. Soc. 144, 17604–17610 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Harris, J. P. et al. Near-infrared 2Eg → 4A2g and visible LMCT luminescence from a molecular bis-(tris(carbene)borate) manganese(IV) complex. Can. J. Chem. 95, 547–552 (2017).

    Article  Google Scholar 

  60. Reichenauer, F. et al. Strongly red-emissive molecular ruby [Cr(bpmp)2]3+ surpasses [Ru(bpy)3]2+. J. Am. Chem. Soc. 143, 11843–11855 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Otto, S. et al. [Cr(ddpd)2]3+: a molecular, water-soluble, highly NIR-emissive ruby analogue. Angew. Chem. Int. Ed. 54, 11572–11576 (2015).

    Article  CAS  Google Scholar 

  62. Fuchigami, T., Inagi, S. & Atobe, M. (eds) Fundamentals and Applications of Organic Electrochemistry Appendix B, 217–222 (John Wiley & Sons, 2015).

  63. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C-H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  64. Pistritto, V. A., Liu, S. & Nicewicz, D. A. Mechanistic investigations into amination of unactivated arenes via cation radical accelerated nucleophilic aromatic substitution. J. Am. Chem. Soc. 144, 15118–15131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Foley, J. K., Korzeniewski, C. & Pons, S. Anodic and cathodic reactions in acetonitrile/tetra-n-butylammonium tetrafluoroborate: an electrochemical and infrared spectroelectrochemical study. Can. J. Chem. 66, 201–206 (1988).

    Article  CAS  Google Scholar 

  66. Hammerich, O. & Parker, V. D. Reaction of the anthracene cation radical with acetonitrile. A novel anodic acetamidation. J. Chem. Soc. Chem. Commun. 1974, 245–246 (1974).

  67. Shen, T. & Lambert, T. H. C–H amination via electrophotocatalytic Ritter-type reaction. J. Am. Chem. Soc. 143, 8597–8602 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jones, R. W. et al. Direct determination of the rate of intersystem crossing in a near-IR luminescent Cr(III) triazolyl complex. J. Am. Chem. Soc. 145, 12081–12092 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schröder, D., Shaik, S. & Schwarz, H. Two-state reactivity as a new concept in organometallic chemistry. Acc. Chem. Res. 33, 139–145 (2000).

    Article  PubMed  Google Scholar 

  70. Geary, W. J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev. 7, 81–122 (1971).

    Article  CAS  Google Scholar 

  71. Basu, U., Otto, S., Heinze, K. & Gasser, G. Biological evaluation of the NIR-emissive ruby analogue [Cr(ddpd)2][BF4]3 as a photodynamic therapy photosensitizer. Eur. J. Inorg. Chem. 2019, 37–41 (2019).

  72. Kavarnos, G. J. & Turro, N. Photosensitization by reversible electron transfer: theories, experimental evidence, and examples. Chem. Rev. 86, 401–449 (1986).

    Article  CAS  Google Scholar 

  73. Van Duyne, R. P. & Reilly, C. N. Low-temperature electrochemistry. I. Characteristics of electrode reactions in the absence of coupled chemical kinetics. Anal. Chem. 44, 142–152 (1972).

    Article  Google Scholar 

  74. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).

    Article  CAS  Google Scholar 

  75. Snellenburg, J. J., Laptenok, S., Seger, R., Mullen, K. M. & van Stokkum, I. H. M. Glotaran: a Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 1–22 (2012).

    Article  Google Scholar 

  76. UHP-T-LA LED: ultra high power collimated LED array light source. Prizmatix https://www.prizmatix.com/LEDUHP/LED-UHP-TLA.aspx (2024).

  77. Neese, F. Software update: the ORCA program system—version 5.0. WIREs Comput. Mol. Sci. 12, e1606 (2022).

    Article  Google Scholar 

  78. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  ADS  Google Scholar 

  79. Miehlich, B., Savin, A., Stoll, H. & Preuss, H. Results obtained with the correlation energy density functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 157, 200–206 (1989).

    Article  CAS  ADS  Google Scholar 

  80. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  ADS  Google Scholar 

  81. Neese, F., Wennmohs, F., Hansen, A. & Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

    Article  CAS  Google Scholar 

  82. Izsák, R. & Neese, F. An overlap fitted chain of spheres exchange method. J. Chem. Phys. 135, 144105 (2011).

    Article  PubMed  ADS  Google Scholar 

  83. Pantazis, D. A., Chen, X.-Y., Landis, C. R. & Neese, F. All-electron scalar relativistic basis sets for third-row transition metal atoms. J. Chem. Theory Comput. 4, 908–919 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Miertus, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum: a direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981).

    Article  CAS  Google Scholar 

  85. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  86. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  ADS  Google Scholar 

  89. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Plasser, F. TheoDORE. http://theodore-qc.sourceforge.net (2024).

  91. Plasser, F. TheoDORE: a toolbox for a detailed and automated analysis of electronic excited state computations. J. Chem. Phys. 152, 084108 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  94. Shao, Y. et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol. Phys. 113, 184–215 (2015).

    Article  CAS  ADS  Google Scholar 

  95. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  ADS  Google Scholar 

  96. Allen, M. & Tildesley, D. Computer Simulations of Liquids 2nd edn (Oxford Academic, 2017).

  97. Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: a linear constraint solver for molecular simulations. J. Comput. Phys. 18, 1463–1472 (1997).

    CAS  Google Scholar 

  98. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    Article  PubMed  ADS  Google Scholar 

  99. Berendsen, H. J. C., Postma, J. P. M., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg University Mainz (MPGC). N.R.E. is a recipient of a position through the DFG Excellence Initiative by the Graduate School Materials Science in Mainz (GSC 266). This work was further supported by the Deutsche Forschungsgemeinschaft through grant INST 247/1018-1 FUGG to K.H. Parts of this research were conducted using the supercomputer Mogon and advisory services offered by Johannes Gutenberg University Mainz (http://www.hpc.uni-mainz.de) and the supercomputer Elwetritsch and advisory services offered by the Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau (https://hpc.rz.rptu.de), which are members of the Allianz für Hochleistungsrechnen Rheinland-Pfalz (AHRP) and the Gauss Alliance e.V. We thank D. Zorn for performing the HPLC analyses. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the paper.

Author information

Authors and Affiliations

Authors

Contributions

N.R.E. performed the syntheses, the reactivity studies, the irradiation experiments and the computational studies. R.N. performed and analysed the luminescence and ultrafast time-resolved experiments and provided data interpretation. C.F. performed and assisted with the computational studies. C.R. assisted with the time-resolved experiments. G.D. performed and analysed the molecular dynamics simulations. K.H. conceptualized the research, conceived the experiments and performed data analyses and interpretation. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Katja Heinze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–57 and Tables 1 and 2.

Supplementary Data 1

Source data of Supplementary Figs. 1–57.

Source data

Source Data Fig. 1

Absorption and emission spectra of [Mn(dgpy)2]4+ and photooxidation of naphthalene.

Source Data Fig. 2

TA spectra of [Mn(dgpy)2]4+ in MeCN and time-dependent DFT transitions of the doublet.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

East, N.R., Naumann, R., Förster, C. et al. Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01446-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01446-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing