Skip to main content
Log in

Normalized bound states for the Choquard equations in exterior domains

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we investigate the following nonlinear Choquard equation with prescribed \(L^2\)-norm constraint

$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta u=\lambda u+(|x|^{-1} *|u|^2)u &{}\text{ in }\ {\Omega }, \\ u=0&{}\text{ on }\ {\partial \Omega }, \\ \int \limits _\Omega |u|^2{\textrm{d}}x=a^2,\\ \end{array} \right. \end{aligned}$$

where \(a>0\), \(\lambda \in \mathbb R\) appears as an unknown Lagrange multiplier and \(\Omega \subset \mathbb R^3\) is an exterior domain with smooth boundary \(\partial \Omega \ne \emptyset \) such that \(\mathbb R^3\backslash \Omega \) is bounded. By using the splitting lemma for the unconstrained problem in exterior domains, we prove the compactness of Palais–Smale sequences corresponding to the above problem at higher energy levels. Then combining the barycentric function and Brouwer degree theory, we establish the existence of positive normalized bound states for any \(a>0\) provided that \(\mathbb R^3\backslash \Omega \) is contained in a small ball and explain that the restriction on domain \(\Omega \) can be equivalently transferred to a. In addition, under the radial setting of domain \(\Omega \), we use genus theory to obtain the existence and multiplicity of radial normalized solutions for any \(a>0\). Finally, we point out that the main results can be extended to a general mass subcritical Choquard equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Benci, V., Cerami, G.: Positive solutions of some nonlinear elliptic problems in exterior domains. Arch. Ration. Mech. Anal. 99, 283–300 (1987)

    Article  MathSciNet  Google Scholar 

  2. Cazenave, T., Lions, P.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  Google Scholar 

  3. Chen, P., Liu, X.: Positive solutions for a Choquard equation in exterior domain. Commun. Pure Appl. Anal. 20, 2237–2256 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chang, K.: Methods in Nonlinear Analysis. Springer, Berlin (2005)

    Google Scholar 

  5. Cingolani, S., Tanaka, K.: Ground state solutions for the nonlinear Choquard equation with prescribed mass. Geom. Prop. Parabol. Elliptic PDE’s 47, 23–41 (2021)

    MathSciNet  Google Scholar 

  6. Cingolani, S., Gallo, M., Tanaka, K.: Multiple solutions for the nonlinear Choquard equation with even or odd nonlinearities. Calc. Var. Partial Differ. Equ. 61, 1–34 (2022)

    Article  MathSciNet  Google Scholar 

  7. Correia, J., Oliveira, C.: Positive solution for a class of Choquard equations with Hardy–Littlewood–Sobolev critical exponent in exterior domains. Complex Var. Elliptic Equ. (2022). https://doi.org/10.1080/17476933.2022.2056888

    Article  Google Scholar 

  8. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  9. Jeanjean, L., Lu, S.: Nonradial normalized solutions for nonlinear scalar field equations. Nonlinearity 32, 4942–4966 (2019)

    Article  MathSciNet  Google Scholar 

  10. Jia, H., Luo, X.: Prescribed mass standing waves for energy critical Hartree equations. Calc. Var. Partial Differ. Equ. 62, 71 (2023)

    Article  MathSciNet  Google Scholar 

  11. Lei, C., Yang, M., Zhang, B.: Sufficient and necessary nonditions for mormalized solutions to a Choquard equation. J. Geom. Anal. 33, 109 (2023)

    Article  MathSciNet  Google Scholar 

  12. Lieb, E., Loss, M.: Analysis. Amer Math Soc, Providence (2001)

    Google Scholar 

  13. Lieb, E.: Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation. Stud. Appl. Math. 57, 93–105 (1977)

    Article  MathSciNet  Google Scholar 

  14. Lions, P.: The Choquard equation and related questions. Nonlinear Anal. 4, 1063–1072 (1980)

    Article  MathSciNet  Google Scholar 

  15. Li, G., Tang, C.: Existence of ground state solutions for Choquard equation involving the general upper critical Hardy–Littlewood–Sobolev nonlinear term, Commun. Pure. Appl. Anal. 18, 285–300 (2018)

    Google Scholar 

  16. Li, G., Tang, C.: Existence of a ground state solution for Choquard equation with the upper critical exponent. Comput. Math. Appl. 76, 2635–2647 (2018)

    Article  MathSciNet  Google Scholar 

  17. Li, G., Ye, H.: The existence of positive solutions with prescribed \(L^2\)-norm for nonlinear Choquard equations. J. Math. Phys. 55, 121501 (2014)

    Article  MathSciNet  Google Scholar 

  18. Long, L., Li, F., Zhu, X.: Normalized solutions to nonlinear scalar field equations with doubly nonlocal terms and critical exponent. J. Math. Anal. Appl. 524, 127142 (2023)

    Article  MathSciNet  Google Scholar 

  19. Ma, L., Zhao, L.: Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195, 455–467 (2010)

    Article  MathSciNet  Google Scholar 

  20. Moroz, V., Schaftingen, J.: Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics. J. Funct. Anal. 265, 153–184 (2013)

    Article  MathSciNet  Google Scholar 

  21. Moroz, V., Schaftingen, J.: Existence of groundstates for a class of nonlinear Choquard equations. Trans. Am. Math. Soc. 367, 6557–6579 (2015)

    Article  MathSciNet  Google Scholar 

  22. Moroz, V., Schaftingen, J.: Groundstates of nonlinear Choquard equations: Hardy–Littlewood–Sobolev critical exponent. Commun. Contemp. Math. 17, 1550005 (2015)

    Article  MathSciNet  Google Scholar 

  23. Moroz, I., Penrose, R., Tod, P.: Spherically-symmetric solutions of the Schrödinger–Newton equations. Classical Quantum Gravity 15, 2733–2742 (1998)

    Article  MathSciNet  Google Scholar 

  24. Palais, R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  Google Scholar 

  25. Pekar, S.: Untersuchung über die Elektronentheorie der Kristalle. Akademie Verlag, Berlin (1954)

    Book  Google Scholar 

  26. Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)

    Article  MathSciNet  Google Scholar 

  27. Shang, X., Ma, P.: Normalized solutions to the nonlinear Choquard equations with Hardy–Littlewood–Sobolev upper critical exponent. J. Math. Anal. Appl. 521, 126916 (2023)

    Article  MathSciNet  Google Scholar 

  28. Struwe, M.: A global compactness result for elliptic boundary value problems involving limiting nonlinearities. Math. Z. 187, 511–517 (1984)

    Article  MathSciNet  Google Scholar 

  29. Wang, T., Yi, T.: Uniqueness of positive solutions of the Choquard type equations. Appl. Anal. 96, 3 (2016)

    MathSciNet  Google Scholar 

  30. Wei, J., Winter, M.: Strongly interacting bumps for the Schrödinger–Newton equations. J. Math. Phys. 50, 012905 (2009)

    Article  MathSciNet  Google Scholar 

  31. Xiang, C.: Uniqueness and nondegeneracy of ground states for Choquard equations in three dimensions. Calc. Var. Partial Differ. Equ. 55, 134 (2016)

    Article  MathSciNet  Google Scholar 

  32. Yang, J., Zhu, L.: Multiple solutions to Choquard equation in exterior domain. J. Math. Anal. Appl. 507, 125726 (2022)

    Article  MathSciNet  Google Scholar 

  33. Yao, S., Chen, H., Rădulescu, D., Sun, J.: Normalized Solutions for lower critical Choquard equations with critical Sobolev perturbation. SIAM J. Math. Anal. 54, 3696–3723 (2022)

    Article  MathSciNet  Google Scholar 

  34. Yang, X.: Existence of positive solution for the Choquard equation in exterior domain. Complex Var. Elliptic Equ. 67, 2043–2059 (2022)

    Article  MathSciNet  Google Scholar 

  35. Ye, H.: Mass minimizers and concentration for nonlinear Choquard equations in \(\mathbb{R} ^N\). Topol. Methods Nonlinear Anal. 48, 393–417 (2016)

    MathSciNet  Google Scholar 

  36. Ye, W., Sheng, Z., Yang, M.: Normalized Solutions for a critical Hartree equation with perturbation. J. Geom. Anal. 32, 242 (2022)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z., Zhang, Z.: Normalized solutions of mass subcritical Schrödinger equations in exterior domains. NoDEA Nonlinear Differ. Equ. Appl. 29, 32 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (No. 12371120) and Chongqing Postdoctoral Science Foundation Project (No. CSTB2023NSCQ-BHX0226).

Author information

Authors and Affiliations

Authors

Contributions

SY wrote the main manuscript text; CY provided the method of the fifth part; C-LT studied the feasibility and modified the paper format. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chun-Lei Tang.

Ethics declarations

Conflict of interest

The authors do not have conflict of interest.

Ethics approval and consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project supported by the National Natural Science Foundation of China (Grant No.12371120) and Chongqing Postdoctoral Science Foundation Project (No.CSTB2023NSCQ-BHX0226).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Yang, C. & Tang, CL. Normalized bound states for the Choquard equations in exterior domains. Z. Angew. Math. Phys. 75, 35 (2024). https://doi.org/10.1007/s00033-024-02188-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-024-02188-w

Keywords

Mathematics Subject Classification

Navigation