Skip to main content
Log in

Characterization of unique solvability of absolute value equations: an overview, extensions, and future directions

  • Review Article
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

This paper provides an overview of the necessary and sufficient conditions for guaranteeing the unique solvability of absolute value equations. In addition to discussing the basic form of these equations, we also address several generalizations, including generalized absolute value equations and matrix absolute value equations. Our survey encompasses known results as well as novel characterizations proposed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beeck, H. (1975) Zur Problematik der Hüllenbestimmung von Intervallgleichungssystemen. In: K. Nickel (ed) Interval Mathemantics: Proceedings of the International Symposium on Interval Mathemantics. LNCS, vol 29. Springer, Berlin, pp. 150–159

  2. Beik, F.P.A., Najafi-Kalyani, M., Mollahasani, S.: On the solvability of tensor absolute value equations. Bull. Malays. Math. Sci. Soc. 45(6), 3157–3176 (2022). https://doi.org/10.1007/s40840-022-01370-5

    Article  MathSciNet  Google Scholar 

  3. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem, revised ed. of the 1992 original edn. SIAM, Philadelphia, PA (2009)

  4. Coxson, G.E.: The P-matrix problem is co-NP-complete. Math. Program. 64(1), 173–178 (1994)

    Article  MathSciNet  Google Scholar 

  5. Cui, L.B., Fan, Y.D., Song, Y.S., Wu, S.L.: The existence and uniqueness of solution for tensor complementarity problem and related systems. J. Optim. Theory Appl. 192(1), 321–334 (2022)

    Article  MathSciNet  Google Scholar 

  6. Cui, L.B., Lian, G.G., Yuan, J.Y.: Existence and uniqueness of positive solution for multilinear systems with generalized strong M-tensor. Appl. Math. Lett. 133, 108262 (2022). https://doi.org/10.1016/j.aml.2022.108262

    Article  MathSciNet  Google Scholar 

  7. Du, S., Zhang, L., Chen, C., Qi, L.: Tensor absolute value equations. Sci. China Math. 61(9), 1695–1710 (2018). https://doi.org/10.1016/j.laa.2013.02.012

    Article  MathSciNet  Google Scholar 

  8. Hashemi, B.: Sufficient conditions for the solvability of a Sylvester-like absolute value matrix equation. Appl. Math. Lett. 112, 106818 (2021). https://doi.org/10.1016/j.aml.2020.106818

    Article  MathSciNet  Google Scholar 

  9. Hladík, M.: Bounds for the solutions of absolute value equations. Comput. Optim. Appl. 69(1), 243–266 (2018). https://doi.org/10.1007/s10589-017-9939-0

    Article  MathSciNet  Google Scholar 

  10. Hladík, M.: Properties of the solution set of absolute value equations and the related matrix classes. SIAM J. Matrix Anal. Appl. 44(1), 175–195 (2023). https://doi.org/10.1137/22M1497018

    Article  MathSciNet  Google Scholar 

  11. Hladík, M., Moosaei, H.: Some notes on the solvability conditions for absolute value equations. Optim. Lett. 17(1), 211–218 (2023). https://doi.org/10.1007/s11590-022-01900-x

    Article  MathSciNet  Google Scholar 

  12. Hladík, M., Zamani, M.: Absolute value programming. In: P.M. Pardalos, O.A. Prokopyev (eds.) Encyclopedia of Optimization, 3rd edn. Springer (2023). https://doi.org/10.1007/978-3-030-54621-2_725-1

  13. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  14. Hu, S.L., Huang, Z.H., Zhang, Q.: A generalized Newton method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 235(5), 1490–1501 (2011). https://doi.org/10.1016/j.cam.2010.08.036

    Article  MathSciNet  Google Scholar 

  15. Huang, B., Li, W.: A modified SOR-like method for absolute value equations associated with second order cones. J. Comput. Appl. Math. 400, 113745 (2022). https://doi.org/10.1016/j.cam.2021.113745

    Article  MathSciNet  Google Scholar 

  16. Jiang, Z., Li, J.: Solving tensor absolute value equation. Appl. Numer. Math. 170, 255–268 (2021). https://doi.org/10.1016/j.apnum.2021.07.020

    Article  MathSciNet  Google Scholar 

  17. Ketabchi, S., Moosaei, H.: Minimum norm solution to the absolute value equation in the convex case. J. Optim. Theory Appl. 154(3), 1080–1087 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kumar, S., Deepmala: The unique solvability conditions for a new class of absolute value equation. Yugosl. J. Oper. Res. 33(3), 425–434 (2023). https://doi.org/10.2298/YJOR220515036K

    Article  MathSciNet  Google Scholar 

  19. Li, C.: Sufficient conditions for the unique solution of a new class of Sylvester-like absolute value equations. J. Optim. Theory Appl. 195(2), 676–683 (2022)

    Article  MathSciNet  Google Scholar 

  20. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007)

    Article  MathSciNet  Google Scholar 

  21. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MathSciNet  Google Scholar 

  22. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419(2), 359–367 (2006)

    Article  MathSciNet  Google Scholar 

  23. Mayer, G.: Interval Analysis and Automatic Result Verification. In: Studies in Mathematics, vol. 65. De Gruyter, Berlin (2017). https://doi.org/10.1515/9783110499469

    Chapter  Google Scholar 

  24. Mezzadri, F.: On the solution of general absolute value equations. Appl. Math. Lett. 107, 106462 (2020)

    Article  MathSciNet  Google Scholar 

  25. Miao, X., Hsu, W.M., Nguyen, C.T., Chen, J.S.: The solvabilities of three optimization problems associated with second-order cone. J. Nonlinear Convex Anal. 22(5), 937–967 (2021)

    MathSciNet  Google Scholar 

  26. Mollahasani, S., Beik, F.P.A.: Absolute value equations with tensor product structure: unique solvability and numerical solution. Appl. Math. 67(5), 657–674 (2022)

    Article  MathSciNet  Google Scholar 

  27. Moosaei, H., Ketabchi, S., Hladík, M.: Optimal correction of the absolute value equations. J. Glob. Optim. 79(3), 645–667 (2021). https://doi.org/10.1007/s10898-020-00948-2

    Article  MathSciNet  Google Scholar 

  28. Neumaier, A.: Interval Methods for Systems of Equations, pp. 85–96. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  29. Popova, E.D.: Explicit characterization of a class of parametric solution sets. Comptes Rendus de L’Academie Bulgare des Sciences 62(10), 1207–1216 (2009)

    MathSciNet  Google Scholar 

  30. Prokopyev, O.A.: On equivalent reformulations for absolute value equations. Comput. Optim. Appl. 44(3), 363–372 (2009)

    Article  MathSciNet  Google Scholar 

  31. Raayatpanah, M.A., Moosaei, H., Pardalos, P.M.: Absolute value equations with uncertain data. Optim. Lett. 14(5), 1145–1156 (2020). https://doi.org/10.1007/s11590-019-01385-1

    Article  MathSciNet  Google Scholar 

  32. Radons, M.: Direct solution of piecewise linear systems. Theor. Comput. Sci. 626, 97–109 (2016). https://doi.org/10.1016/j.tcs.2016.02.009

    Article  MathSciNet  Google Scholar 

  33. Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)

    Article  MathSciNet  Google Scholar 

  34. Rohn, J.: A theorem of the alternatives for the equation \(Ax + B|x| = b\). Linear Multilinear Algebra 52(6), 421–426 (2004)

    Article  MathSciNet  Google Scholar 

  35. Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: a survey. Electron. J. Linear Algebra 18, 500–512 (2009)

    Article  MathSciNet  Google Scholar 

  36. Rohn, J.: On Rump’s characterization of P-matrices. Optim. Lett. 6(5), 1017–1020 (2012)

    Article  MathSciNet  Google Scholar 

  37. Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability. Optim. Lett. 8(1), 35–44 (2014)

    Article  MathSciNet  Google Scholar 

  38. Rump, S.M.: On P-matrices. Linear Algebra Appl. 363, 237–250 (2003)

    Article  MathSciNet  Google Scholar 

  39. Sharma, S., Palpandi, K.: Some existence results for the generalized tensor absolute value equation. Filomat 37(13), 4185–4194 (2023). https://doi.org/10.2298/FIL2313185S

    Article  MathSciNet  Google Scholar 

  40. Skalna, I.: Parametric Interval Algebraic Systems. Studies in Computational Intelligence, vol. 766. Springer, Cham (2018)

    Google Scholar 

  41. Tang, W.L., Miao, S.X.: On the solvability and Picard-type method for absolute value matrix equation. Comp. Appl. Math. 41, 78 (2022). https://doi.org/10.1007/s40314-022-01782-w

    Article  MathSciNet  Google Scholar 

  42. Wang, L.M., Li, C.X.: New sufficient conditions for the unique solution of a square Sylvester-like absolute value equation. Appl. Math. Lett. 116, 106966 (2021). https://doi.org/10.1016/j.aml.2020.106966

    Article  MathSciNet  Google Scholar 

  43. Wu, S., Shen, S.: On the unique solution of the generalized absolute value equation. Optim. Lett. 15, 2017–2024 (2021)

    Article  MathSciNet  Google Scholar 

  44. Wu, S.L.: The unique solution of a class of the new generalized absolute value equation. Appl. Math. Lett. 116, 107029 (2021). https://doi.org/10.1016/j.aml.2021.107029

    Article  MathSciNet  Google Scholar 

  45. Wu, S.L., Guo, P.: On the unique solvability of the absolute value equation. J. Optim. Theory Appl. 169(2), 705–712 (2016). https://doi.org/10.1007/s10957-015-0845-2

    Article  MathSciNet  Google Scholar 

  46. Wu, S.L., Li, C.X.: The unique solution of the absolute value equations. Appl. Math. Lett. 76, 195–200 (2018)

    Article  MathSciNet  Google Scholar 

  47. Yang, S., Wu, S.L.: SOR-like method for a new generalized absolute value equation. Math. Notes 113(3–4), 567–573 (2023). https://doi.org/10.1134/S0001434623030276

    Article  MathSciNet  Google Scholar 

  48. Zamani, M., Hladík, M.: A new concave minimization algorithm for the absolute value equation solution. Optim. Lett. 15(6), 2241–2254 (2021). https://doi.org/10.1007/s11590-020-01691-z

    Article  MathSciNet  Google Scholar 

  49. Zamani, M., Hladík, M.: Error bounds and a condition number for the absolute value equations. Math. Program. 198(1), 85–113 (2023). https://doi.org/10.1007/s10107-021-01756-6

    Article  MathSciNet  Google Scholar 

  50. Zhang, C., Wei, Q.J.: Global and finite convergence of a generalized Newton method for absolute value equations. J. Optim. Theory Appl. 143(2), 391–403 (2009)

    Article  MathSciNet  Google Scholar 

  51. Zhou, H., Wu, S.: On the unique solution of a class of absolute value equations \(Ax-B|Cx|=d\). AIMS Math. 6(8), 8912–8919 (2021). https://doi.org/10.3934/math.2021517

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S. Kumar was supported by the Ministry of Education, Government of India, through Graduate Aptitude Test in Engineering (GATE) fellowship registration No. MA19S43033021. M. Hladík and Hossein Moosaei were supported by the Czech Science Foundation Grant P403-22-11117 S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Hladík.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Deepmala, Hladík, M. et al. Characterization of unique solvability of absolute value equations: an overview, extensions, and future directions. Optim Lett 18, 889–907 (2024). https://doi.org/10.1007/s11590-024-02094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-024-02094-0

Keywords

Navigation