Skip to main content

Advertisement

Log in

Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia

  • Research
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hypoxia plays a significant role in the development of various cerebral diseases, many of which are associated with the potential risk of recurrence due to mitochondrial damage. Conventional drug treatments are not always effective for hypoxia-related brain diseases, necessitating the exploration of alternative compounds. In this study, we investigated the potential of diphenyl diselenide [(PhSe)2] to ameliorate locomotor impairments and mitigate brain mitochondrial dysfunction in zebrafish subjected to hypoxia. Additionally, we explored whether these improvements could confer resistance to recurrent hypoxia. Through a screening process, an appropriate dose of (PhSe)2 was determined, and animals exposed to hypoxia received a single intraperitoneal injection of 100 mg/kg of the compound or vehicle. After 1 h from the injection, evaluations were conducted on locomotor deficits, (PhSe)2 content, mitochondrial electron transport system, and mitochondrial viability in the brain. The animals were subsequently exposed to recurrent hypoxia to assess the latency time to hypoxia symptoms. The findings revealed that (PhSe)2 effectively crossed the blood–brain barrier, attenuated locomotor deficits induced by hypoxia, and improved brain mitochondrial respiration by modulating complex III. Furthermore, it enhanced mitochondrial viability in the telencephalon, contributing to greater resistance to recurrent hypoxia. These results demonstrate the beneficial effects of (PhSe)2 on both hypoxia and recurrent hypoxia, with cerebral mitochondria being a critical target of its action. Considering the involvement of brain hypoxia in numerous pathologies, (PhSe)2 should be further tested to determine its effectiveness as a potential treatment for hypoxia-related brain diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Availability of Data and Materials Data available on request from the authors.

References

  • Adedara IA, Abolaji AO, Rocha JBT, Farombi EO (2016) Diphenyl Diselenide Protects Against Mortality, Locomotor Deficits and Oxidative Stress in Drosophila melanogaster Model of Manganese-Induced Neurotoxicity. Neurochem Res 41:1430–1438. https://doi.org/10.1007/s11064-016-1852-x

    Article  CAS  PubMed  Google Scholar 

  • Adedara IA, Owoeye O, Awogbindin IO, Ajayi BO, Rocha JBT, Farombi EO (2018) Diphenyl diselenide abrogates brain oxidative injury and neurobehavioural de fi cits associated with pesticide chlorpyrifos exposure in rats. Chem Biol Interact 296:105–116. https://doi.org/10.1016/j.cbi.2018.09.016

    Article  CAS  PubMed  Google Scholar 

  • Ando K, Ishii T, Fukuhara S (2021) Zebrafish Vascular Mural Cell Biology : Recent Advances , Development , and Functions. life. https://doi.org/10.3390/life11101041

  • Baillieul S, Dekkers M, Brill A, Schmidt MH, Detante O, Pépin J, Tamisier R, Bassetti C (2022) Sleep apnoea and ischaemic stroke : current knowledge and future directions. Lancet Neurol 21. https://doi.org/10.1016/S1474-4422(21)00321-5

  • Baldissera MD, Souza CF, da Silva AS, Henn AS, Flores EMM, Baldisserotto B (2020) Diphenyl diselenide dietary supplementation alleviates behavior impairment and brain damage in grass carp (Ctenopharyngodon idella) exposed to methylmercury chloride. Comp Biochem Physiol Part - C Toxicol Pharmacol 229:108674. https://doi.org/10.1016/j.cbpc.2019.108674

    Article  CAS  Google Scholar 

  • Baltan S, Morrison RS, Murphy SP (2013) Novel Protective Effects of Histone Deacetylase Inhibition on Stroke and White Matter Ischemic Injury. Neurotherapeutics 798–807. https://doi.org/10.1007/s13311-013-0201-x

  • Bantounou M, Plascevic J, Galley HF (2022) Melatonin and Related Compounds: Antioxidant and Anti-Inflammatory Actions. antioxidants. https://doi.org/10.3390/antiox11030532

  • Braga MM, Rico EP, Córdova SD, Pinto CB, Blaser RE, Dias RD, Rosemberg DB, Oliveira DL, Souza DO (2013) Evaluation of spontaneous recovery of behavioral and brain injury profiles in zebrafish after hypoxia. Behav Brain Res 253:145–151

    Article  CAS  PubMed  Google Scholar 

  • Braga MM, Silva ES, Moraes TB, Schirmbeck GH, Rico EP, Pinto CB, Rosemberg DB, Dutra-Filho CS, Dias RD, Oliveira DL, Rocha JBT, Souza DO (2016) Brain zinc chelation by diethyldithiocarbamate increased the behavioral and mitochondrial damages in zebrafish subjected to hypoxia. Sci Rep 6:20279

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Brüning CA, Prigol M, Luchese C, Jesse CR, Duarte MM, Roman SS, Nogueira CW (2012) Protective effect of diphenyl diselenide on ischemia and reperfusion-induced cerebral injury: involvement of oxidative stress and pro-inflammatory cytokines. Neurochem Res 37(10):2249–2258

    Article  PubMed  Google Scholar 

  • Bueno D, Meinerz D, Waczuk E, de Souza D, Batista Rocha J (2018) Toxicity of organochalcogens in human leukocytes is associated, but not directly related with reactive species production, apoptosis and changes in antioxidant gene expression. Free Radic Res 52:1158–1169. https://doi.org/10.1080/10715762.2018.1536824

    Article  CAS  PubMed  Google Scholar 

  • Burger M, Fachinetto R, Calegari L, Paixão MW, Braga AL, Rocha JB (2004) Effects of age on reserpine-induced orofacial dyskinesia and possible protection of diphenyl diselenide. Brain Res Bull 64(4):339–345

    Article  CAS  PubMed  Google Scholar 

  • Cabral-Costa J, Kowaltowski AJ (2020) Neurological disorders and mitochondria. Mol Aspects Med 71:100826. https://doi.org/10.1016/j.mam.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  • Cesar P, Araujo O, Henrique M, Sari M, Silva N, Ten J, Jung K, Augusto C (2020) Effect of m -trifluoromethyl-diphenyl diselenide on acute and subchronic animal models of in fl ammatory pain : Behavioral , biochemical and molecular insights. Chem Biol Interact 317. https://doi.org/10.1016/j.cbi.2020.108941

  • Chang J, Lien C-F, Lee W-S, Yang K-T (2019) Intermittent Hypoxia Prevents Myocardial Mitochondrial Ca2+ Overload and Cell Death during Ischemia/Reperfusion: The Role of Reactive Oxygen Species. Cells 8. https://doi.org/10.3390/cells8060564

  • Choudhry H, Harris AL (2018) Advances in Hypoxia-Inducible Factor Biology. Cell Metab 27:281–298. https://doi.org/10.1016/j.cmet.2017.10.005

    Article  CAS  PubMed  Google Scholar 

  • Clark DD, Sokoloff L (1999) In: Basic Neurochemistry: Molecular, Cellular and Medical Aspects, eds. Siegel, G. J., Agranoff, B. W., Albers, R. W., Fisher, S. K. & Uhler, M. D. (Lippincott, Philadelphia), 637–670

  • Coull AJ, Lovett JK, Rothwell PM, for the Oxford Vascular Study (2004) Population based study of early risk of stroke after transient ischaemic attack or minor stroke: implications for public education and organisation of services. BMJ 328:326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Covarrubias AE, Lecarpentier E, Lo A, Salahuddin S, Gray KJ, Karumanchi SA, Zsengellér ZK (2019) AP39, a Modulator of Mitochondrial Bioenergetics, Reduces Antiangiogenic Response and Oxidative Stress in Hypoxia-Exposed Trophoblasts: Relevance for Preeclampsia Pathogenesis. Am J Pathol 189:104–114. https://doi.org/10.1016/j.ajpath.2018.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cowan K, Anichtchik O, Luo S (2019) Mitochondrial integrity in neurodegeneration 825–836. https://doi.org/10.1111/cns.13105

  • da Rosa EJ, da Silva MH, Carvalho NR, Bridi JC, da Rocha JB, Carbajo-Pescador S, Mauriz JL, González-Gallego J, Soares FA (2012) Reduction of acute hepatic damage induced by acetaminophen after treatment with diphenyl diselenide in mice. Toxicol Pathol 40(4):605–613

    Article  PubMed  Google Scholar 

  • da Silva MH, da Rosa EJ, de Carvalho NR, Dobrachinski F, da Rocha JB, Mauriz JL, González-Gallego J, Soares FA (2012) Acute brain damage induced by acetaminophen in mice: effect of diphenyl diselenide on oxidative stress and mitochondrial dysfunction. Neurotox Res 21(3):334–344

    Article  CAS  PubMed  Google Scholar 

  • Dalla Corte CL, Wagner C, Sudati JH, Comparsi B, Leite GO, Busanello A, Soares FA, Aschner M, Rocha JB (2013) Effects of diphenyl diselenide on methylmercury toxicity in rats. Biomed Res Int 2013:983821

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickerson LM, Carek PJ, Quattlebaum RG (2007) Prevention of recurrent ischemic stroke. Am Fam Physician 76:382–388

    PubMed  Google Scholar 

  • Dobrachinski F, da Silva MH, Tassi CL, de Carvalho NR, Dias GR, Golombieski RM, da Silva Loreto EL, da Rocha JB, Fighera MR, Soares FA (2014) Neuroprotective effect of diphenyl diselenide in a experimental stroke model: maintenance of redox system in mitochondria of brain regions. Neurotox Res 26(4):317–330

    Article  CAS  PubMed  Google Scholar 

  • Elks PM, Renshaw SA, Meijer AH, Walmsley SR, Van Eeden FJ (2015) Exploring the HIFs, buts and maybes of hypoxia signalling in disease: Lessons from zebrafish models. DMM Dis Model Mech 8:1349–1360. https://doi.org/10.1242/dmm.021865

    Article  CAS  PubMed  Google Scholar 

  • Gayibov UG, Komilov EJ, Rakhimov RN, Ergashev NA, Abdullajanova NG, Asrorov MI, Aripov TF (2019) Influence of new polyphenol compound from Euphorbia plant on mitochondrial function. J Microbiol Biotechnol Food Sci 8:1021–1025. https://doi.org/10.15414/jmbfs.2019.8.4.1021-1025

    Article  CAS  Google Scholar 

  • Ghisleni G, Porciúncula LO, Cimarosti H, Rocha JBT, Salbego CG, Souza DO (2003) Diphenyl diselenide protects rat hippocampal slices submitted to oxygen-glucose deprivation and diminishes inducible nitric oxide synthase immunocontent. Brain Res 986(1–2):196–199

    Article  CAS  PubMed  Google Scholar 

  • Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB, Powers S, Hamilton K (2021) Mitochondrial lactate metabolism : history and implications for exercise and disease The Journal of Physiology. J Physiol 3:863–888. https://doi.org/10.1113/JP278930

    Article  CAS  Google Scholar 

  • Glaser V, Paula R De, Ana M, Hoffmann J, Humberto J, Alicia M, Lucia A, Alexandra DP (2014) Diphenyl diselenide administration enhances cortical mitochondrial number and activity by increasing hemeoxygenase type 1 content in a methylmercury-induced neurotoxicity mouse model. Mol Cell Biochem 1–8. https://doi.org/10.1007/s11010-013-1870-9

  • Gonzalez FJ, Xie C, Jiang C (2019) The role of hypoxia-inducible factors in metabolic diseases. Nat Rev Endocrinol 15. https://doi.org/10.1038/s41574-018-0096-z

  • Graziele B, Pinto AP, Cristina J, Batista J, Alberto-silva C, Silva M (2022) Diphenyl diselenide suppresses key virulence factors of Candida krusei, a neglected fungal pathogen. Biofouling 38:427–440. https://doi.org/10.1080/08927014.2022.2084388

    Article  CAS  Google Scholar 

  • Hernansanz-Agustín P, Enríquez JA (2021) Generation of reactive oxygen species by mitochondria. Antioxidants 10:1–18. https://doi.org/10.3390/antiox10030415

    Article  CAS  Google Scholar 

  • Hopkins RO, Bigler ED (2008) Hypoxic and anoxic conditions of the CNS. In: J. E. Morgan & J. H. Ricker (Eds.), Textbook of clinical neuropsychology. (pp. 521–535), New York: Taylor and Francis

  • Hort MA, Straliotto MR, de Oliveira J, Amoêdo ND, da Rocha JB, Galina A, Ribeiro-do-Valle RM, de Bem AF (2014) Diphenyl diselenide protects endothelial cells against oxidized low density lipoprotein-induced injury: Involvement of mitochondrial function. Biochimie 105:172–181

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Hur B, Mussulini M, Moro L, Assis AMD, Rosemberg DB, Oliveira DLD, Rocha JBT, Schwab RS, Henrique P, Souza DO, Rico EP (2014) Anxiolytic effects of diphenyl diselenide on adult zebra fi sh in a novelty paradigm. Prog Neuropsychopharmacol Biol Psychiatry 54:187–194. https://doi.org/10.1016/j.pnpbp.2014.06.002

    Article  CAS  PubMed  Google Scholar 

  • Ivannikov MV, Macleod GT (2013) Mitochondrial free Ca2+ levels and their effects on energy metabolism in drosophila motor nerve terminals. Biophys J 104:2353–2361. https://doi.org/10.1016/j.bpj.2013.03.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leão MB, Rosa PCC, Wagner C, Lugokenski TH, Corte CLD (2018) Methylmercury and diphenyl diselenide interactions in Drosophila melanogaster : effects on development , behavior , and Hg levels. Environ Sci Pollut Res 21568–21576

  • Lee P, Chandel NS, Simon MC (2020) Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol 21:268–283. https://doi.org/10.1038/s41580-020-0227-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Li X, Ma X, Xiao W, Zhang J (2022) Mapping the m1A, m5C, m6A and m7G methylation atlas in zebrafish brain under hypoxic conditions by MeRIP-seq. BMC Genomics 23:1–19. https://doi.org/10.1186/s12864-022-08350-w

    Article  CAS  Google Scholar 

  • Kalueff AV, Gebhardt M, Stewart AM et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86. https://doi.org/10.1089/zeb.2012.0861

  • Ma Q, Hu CT, Yue J, Luo Y, Qiao F, Chen LQ, Zhang ML, Du ZY (2020) High-carbohydrate diet promotes the adaptation to acute hypoxia in zebrafish. Fish Physiol Biochem 46:665–679. https://doi.org/10.1007/s10695-019-00742-2

    Article  CAS  PubMed  Google Scholar 

  • Martins CC, Rosa SG, Recchi AMS, Nogueira CW, Zeni G (2020) m-Trifluoromethyl-diphenyl diselenide (m-CF3-PhSe)2 modulates the hippocampal neurotoxic adaptations and abolishes a depressive-like phenotype in a short-term morphine withdrawal in mice. Prog Neuropsychopharmacol Biol Psychiatry 98:109803. https://doi.org/10.1016/j.pnpbp.2019.109803

    Article  CAS  PubMed  Google Scholar 

  • Matheus M, Macedo GTD, Prestes AS, Ecker A, Müller TE, Leitemperger J, Fontana BD, Ardisson-araújo DMP, Rosemberg DB, Barbosa NV (2020) Modulation of redox and insulin signaling underlie the anti-hyperglycemic and antioxidant e ff ects of diphenyl diselenide in zebra fi sh. Free Radic Biol Med 158:20–31. https://doi.org/10.1016/j.freeradbiomed.2020.06.002

    Article  CAS  Google Scholar 

  • Merelli A, César J, Rodríguez G, Folch J, Regueiro MR, Camins A, Lazarowski A, Neurodegeneration K (2018) Understanding the Role of Hypoxia Inducible Factor During Neuro- degeneration for New Therapeutics Opportunities 1484–1498. https://doi.org/10.2174/1570159X16666180110130253

  • Mertens RT, Parkin S, Awuah SG (2020) Cancer cell-selective modulation of mitochondrial respiration and metabolism by potent organogold(III) dithiocarbamates. Chem Sci 11:10465–10482. https://doi.org/10.1039/d0sc03628e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morin C, Zini R, Tillement J-P (2003) Anoxia–reoxygenation-induced cytochrome c and cardiolipin release from rat brain mitochondria. Biochem Biophys Res Commun 307:477–482

    Article  CAS  PubMed  Google Scholar 

  • Mota L, Hofstatter J, Ferreira E, Henrique M, Sari M, Weber C, Costa V, Espindola N, Raquel L, Fernandes C, Maria R, Rosângela M, Cassia RD, Anna S (2019) Antitumor action of diphenyl diselenide nanocapsules : In vitro assessments and preclinical evidence in an animal model of glioblastoma multiforme. J Trace Elem Med Biol 55:180–189. https://doi.org/10.1016/j.jtemb.2019.06.010

    Article  CAS  Google Scholar 

  • Mráček T, Drahota Z, Houštěk J (2013) The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim Biophys Acta 1827(3):401–410

    Article  PubMed  Google Scholar 

  • Mukandala G, Tynan R, Lanigan S, O'Connor JJ (2016) The Effects of Hypoxia and Inflammation on Synaptic Signaling in the CNS. Brain Sci 6(1)pii: E6

  • Ng YS, Bindoff LA, Gorman GS, Klopstock T, Kornblum C, Mancuso M, Mcfarland R, Sue CM, Suomalainen A, Taylor RW, Thorburn DR, Turnbull DM (2021) Mitochondrial disease in adults : recent advances and future promise. Lancet Neurol 20:573–584. https://doi.org/10.1016/S1474-4422(21)00098-3

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CW, Zeni G, Rocha JBT (2004) Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem Rev 104(12):6255–6286. https://doi.org/10.1021/cr0406559

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CW (2010) Diphenyl Diselenide a Janus-Faced Molecule 21, 2055–2071

  • Occai BK, Hassan W, Batista J (2018) Chemico-Biological Interactions Gender-based behavioral and biochemical e ff ects of diphenyl diselenide in Drosophila melanogaster. Chem Biol Interact 279:196–202. https://doi.org/10.1016/j.cbi.2017.10.027

    Article  CAS  PubMed  Google Scholar 

  • Osellame LD, Hons BS, Ph D, Blacker TS, Duchen MR, Oxon BA (2012) Cellular and molecular mechanisms of mitochondrial function. Best Pract Res Clin Endocrinol Metab 26:711–723. https://doi.org/10.1016/j.beem.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paduraru E, Iacob D, Rarinca V, Plavan G, Ureche D, Jijie R, Nicoara M (2023) Zebrafish as a Potential Model for Neurodegenerative Diseases: A Focus on Toxic Metals Implications. Int J Mol Sci 24. https://doi.org/10.3390/ijms24043428

  • Pan W, Godoy RS, Cook DP, Scott AL, Nurse CA, Jonz MG (2022) Single-cell transcriptomic analysis of neuroepithelial cells and other cell types of the gills of zebrafish (Danio rerio) exposed to hypoxia. Sci Rep 12:1–17. https://doi.org/10.1038/s41598-022-13693-1

    Article  CAS  Google Scholar 

  • Pluta R, Jolkkonen J, Cuzzocrea S, Pedata F, Cechetto D, Popa-Wagner A (2011) Cognitive impairment with vascular impairment and degeneration. Curr Neurovasc Res 8:342–350

    Article  CAS  PubMed  Google Scholar 

  • Puntel RL, Roos DH, Seeger RL, Rocha JB (2013) Mitochondrial electron transfer chain complexes inhibition by different organochalcogens. Toxicol Vitro 27(1):59–70

    Article  CAS  Google Scholar 

  • Quispe RL, Jaramillo ML, Galant LS, Engel D, Dafre AL, Teixeira da Rocha JB, Radi R, Farina M, de Bem AF (2019) Diphenyl diselenide protects neuronal cells against oxidative stress and mitochondrial dysfunction: Involvement of the glutathione-dependent antioxidant system. Redox Biol 20:118–129. https://doi.org/10.1016/j.redox.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  • Raefsky SM, Mattson MP (2017) Adaptive responses of neuronal mitochondria to bioenergetic challenges : Roles in neuroplasticity and disease resistance. Free Radic Biol Med 102:203–216. https://doi.org/10.1016/j.freeradbiomed.2016.11.045

    Article  CAS  PubMed  Google Scholar 

  • Rayner BS, Duong TT, Myers SJ, Witting PK (2006) Protective effect of a synthetic anti-oxidant on neuronal cell apoptosis resulting from experimental hypoxia re-oxygenation injury. J Neurochem 97(1):211–221

    Article  CAS  PubMed  Google Scholar 

  • Read AD, Et R, Archer SL, Dunham-snary KJ (2021) Redox Biology Mitochondrial iron – sulfur clusters : Structure, function, and an emerging role in vascular biology. Redox Biol 47:102164. https://doi.org/10.1016/j.redox.2021.102164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosemberg DB, Rico EP, Mussulini BHM et al (2011) Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS One 6:1–11. https://doi.org/10.1371/journal.pone.0019397

  • Scharping NE, Rivadeneira DB, Menk AV, Vignali PDA, Ford BR, Rittenhouse NL, Peralta R, Wang Y, Wang Y, DePeaux K, Poholek AC, Delgoffe GM (2021) Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol 22:205–215. https://doi.org/10.1038/s41590-020-00834-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao Z, Dou S, Zhu J, Wang H, Xu D, Wang C, Cheng B, Bai B (2021) Apelin-36 protects HT22 cells against oxygen-glucose deprivation/reperfusion-induced oxidative stress and mitochondrial dysfunction by promoting sirt1-mediated pink1/parkin-dependent mitophagy. Neurotox Res 39:740–753. https://doi.org/10.1007/s12640-021-00338-w

    Article  CAS  PubMed  Google Scholar 

  • Silva ES, Rocha JB, Souza DO, Braga MM (2016) How does zebrafish support new strategies for neuroprotection and neuroregeneration in hypoxia-related diseases? Neural Regen Res 11(7):1069–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SL, Heal DJ, Martin KF (2005) KTX 0101: a potential metabolic approach to cytoprotection in major surgery and neurological disorders. CNS Drug Rev 11:113–140

    Article  CAS  PubMed  Google Scholar 

  • Snyder BD, Simone SM, Giovannetti T, Floyd TF (2022) Cerebral hypoxia: its role in age-related chronic and acute cognitive dysfunction. Anesth Analg 132:1502–1513. https://doi.org/10.1213/ANE.0000000000005525.Cerebral

    Article  Google Scholar 

  • Souza ACG, Stangherlin EC, Ardais AP, Nogueira CW (2010) Diphenyl diselenide and diphenyl ditelluride : neurotoxic effect in brain of young rats , in vitro. Mol Cell Biochem 179–185. https://doi.org/10.1007/s11010-010-0416-7

  • Tanayapong P, Kuna ST (2021) Sleep disordered breathing as a cause and consequence of stroke : A review of pathophysiological and clinical relationships. Sleep Med Rev 59:101499. https://doi.org/10.1016/j.smrv.2021.101499

    Article  CAS  PubMed  Google Scholar 

  • Tatu L, Vuillier F (2014) Structure and vascularization of the human hippocampus. Front Neurol Neurosci 34:18–25

    Article  PubMed  Google Scholar 

  • Taylor CT, Colgan SP (1999) Therapeutic Targets for Hypoxia-Elicited Pathways. Pharm Res 16

  • Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM (2003) Silent brain infarcts and the risk of dementia and cognitive decline. N Engl J Med 348:1215–1222

    Article  PubMed  Google Scholar 

  • Wang Z, Liu D, Zhan J, Xie K, Wang X, Xian X, Gu J, Chen W, Hao A (2013) Melatonin improves short and long-term neurobehavioral deficits and attenuates hippocampal impairments after hypoxia in neonatal mice. Pharmacol Res 76:84–97

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang Y, Yang Y, Zhang W, Luo L, Han F, Guan H, Tao K, Hu D (2019) Curcumin pretreatment protects against hypoxia/reoxgenation injury via improvement of mitochondrial function, destabilization of HIF-1α and activation of Epac1-Akt pathway in rat bone marrow mesenchymal stem cells. Biomed Pharmacother 109:1268–1275. https://doi.org/10.1016/j.biopha.2018.11.005

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cui L, Ji X (2022) Cognitive impairment caused by hypoxia : from clinical evidences to molecular mechanisms. Metab Brain Dis 51–66

  • Wasel O, Freeman JL (2020) Chemical and genetic zebrafish models to define mechanisms of and treatments for dopaminergic neurodegeneration. Int J Mol Sci 21:1–14. https://doi.org/10.3390/ijms21175981

    Article  CAS  Google Scholar 

  • Yamasaki K, Nakayasu H (2003) Visualization of erythrocytes in the zebrafish brain. Zoolog Sci 20(9):1071–1078

    Article  PubMed  Google Scholar 

  • Yeo EJ (2019) Hypoxia and aging. Exp Mol Med 51. https://doi.org/10.1038/s12276-019-0233-3

Download references

Funding

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), INCT-Excitoxicidade e Neuroproteção and by FINEP research grant “Rede Instituto Brasileiro de Neurociência (IBN-Net)” # 01.06.0842–00.

Author information

Authors and Affiliations

Authors

Contributions

GSR, MMB, JBTR. Conceived and designed the experiments. GSR, MMB, BHMM, ESS, GL, EAC. Performed the experiments. GSR, MMB, BHMM, GL, ESS, EAC. Analyzed the data. JBTR, DLO, DOS. Contributed reagents/materials/analysis tools. GSR, MMB, JLF, DLO, DOS, JBTR. Wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to João Batista T. Rocha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Statement for Neurotoxicity Research

I testify on behalf of all co-authors that our article submitted to Neurotoxicity Research has been reviewed and approved for publication in its current form. All animal experiments described were approved by the Ethics Committee of Universidade Federal de Santa Maria (number 2523130115 – CEUA) and were carried out in accordance with the National Research Council Guide for the care and use of laboratory animals.

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• (PhSe)2 promoted greater resistance to recurrent hypoxia.

• (PhSe)2 increased the respiration of brain mitochondria.

• (PhSe)2 has been shown to be effective in attenuating damage caused by hypoxia.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 235 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rieder, G.S., Braga, M.M., Mussulini, B.H.M. et al. Diphenyl Diselenide Attenuates Mitochondrial Damage During Initial Hypoxia and Enhances Resistance to Recurrent Hypoxia. Neurotox Res 42, 13 (2024). https://doi.org/10.1007/s12640-024-00691-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12640-024-00691-6

Keywords

Navigation