Skip to main content
Log in

References tracking and perturbations reconstruction in a Cartesian robot

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

An exosystem needs to be nonlinear when it generates the perturbations to be reconstructed; however, an exosystem does not need to be nonlinear when it generates the references to be tracked. Resulting that the tracking of the references generated by an exosystem is an easier task. Hence, some studies on the references tracking should be made. Furthermore, to solve the references tracking, the perturbations are needed. In this research, the references tracking and the perturbations reconstruction in a Cartesian robot are discussed. For the perturbations reconstruction, an estimator is defined to force the reconstructed perturbations to track the perturbations of a Cartesian robot model. For the references tracking, a controller is defined to force a Cartesian robot model to track an exosystem. A theorem is addressed to prove the perturbations reconstruction. A theorem is addressed to prove the references tracking. A simulation in a Cartesian robot is used to confirm the validity and effectiveness of our controller with estimator in comparison with a feedback controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  • Abbasi, S.J., Khan, H., Lee, J.W., Salman, M., Lee, M.C.: Robust control design for accurate trajectory tracking of multi-degree-of-freedom robot manipulator in virtual simulator. IEEE Access 10, 17155–17168 (2022)

    Article  Google Scholar 

  • Aravind, R.V., Balasubramaniam, P.: Dwell-time-dependent memory based state feedback controller design for switched Takagi–Sugeno fuzzy nonlinear systems. Inf. Sci. 609, 838–854 (2022)

    Article  Google Scholar 

  • Basu, H., Yoon, S.Y.: Robust cooperative output regulation under exosystem detectability constraint. Int. J. Control. 93(5), 1102–1114 (2020)

    Article  MathSciNet  Google Scholar 

  • Chen, S.-L., Li, X., Teo, C.S., Tan, K.K.: Composite jerk feedforward and disturbance observer for robust tracking of flexible systems. Automatica 80, 253–260 (2017)

    Article  MathSciNet  Google Scholar 

  • de Souza, C., Tarbouriech, S., Leite, V.J.S., Castelan, E.B.: Co-design of an event-triggered dynamic output feedback controller for discrete-time LPV systems with constraints. J. Frankl. Inst. 359, 697–718 (2022)

    Article  MathSciNet  Google Scholar 

  • Deng, C., Che, W.-W., Shi, P.: Cooperative fault-tolerant output regulation for multiagent systems by distributed learning control approach. IEEE Trans. Neural Netw. Learn. Syst. 31(11), 4831–4841 (2020)

    Article  MathSciNet  PubMed  Google Scholar 

  • Dong, Y., Chen, J., Huang, J.: Cooperative robust output regulation for second-order nonlinear multiagent systems with an unknown exosystem. IEEE Trans. Autom. Control 63(10), 3418–3425 (2018)

    Article  MathSciNet  Google Scholar 

  • Francis, B.A.: The linear multivariable regulator problem. SIAM J. Control. Optim. 15, 486–505 (1997)

    Article  MathSciNet  Google Scholar 

  • Ge, W., Chen, S., Hu, H., Zheng, T., Fang, Z., Zhang, C., Yang, G.: Detection and localization strategy based on YOLO for robot sorting under complex lighting conditions. Int. J. Intell. Robot. Appl. 7, 589–601 (2023)

    Article  Google Scholar 

  • Isidori, A.: Nonlinear Control Systems. Springer, Berlin (1995)

    Book  Google Scholar 

  • Jia, F., Lei, C., Lu, J., Chu, Y.: Adaptive prescribed performance output regulation of nonlinear systems with nonlinear exosystems. Int. J. Control. Autom. Syst. 18(8), 1946–1955 (2020)

    Article  Google Scholar 

  • Jin, F.-F., Guo, B.-Z.: Boundary output tracking for an Euler–Bernoulli beam equation with unmatched perturbations from a known exosystem. Automatica 109, 108507 (2019)

    Article  MathSciNet  Google Scholar 

  • Khan, H., Lee, M.C.: Extremum seeking-based adaptive sliding mode control with sliding perturbation observer for robot manipulators. In: 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 29 May 2023–2 June 2023. IEEE (2023)

  • Khan, H., Lee, M.C., Lee, J.W., Li, C., Salman, M.: Force/torque-based impedance control with perturbation observer toward high payload system robust trajectory tracking. IEEE Access 10, 119150–119161 (2022)

    Article  Google Scholar 

  • Kopf, F., Westermann, J., Flad, M., Hohmann, S.: Adaptive optimal control for reference tracking independent of exo-system dynamics. Neurocomputing 405, 173–185 (2020)

    Article  Google Scholar 

  • Li, X., Chen, S.-L., Teo, C.S., Tan, K.K.: Data-based tuning of reduced-order inverse model in both disturbance observer and feedforward with application to tray indexing. IEEE Trans. Industr. Electron. 64(7), 5492–5501 (2017)

    Article  Google Scholar 

  • Li, G., Xiao, F., Zhang, X., Tao, B., Jiang, G.: An inverse kinematics method for robots after geometric parameters compensation. Mech. Mach. Theory 174, 104903 (2022)

    Article  Google Scholar 

  • Li, C., Khan, H., Lee, J., Kim, J., Lee, M.C.: Fuzzy TSMCSPO for trajectory tracking of nuclear reactor dismantlement robot manipulator. IEEE Access 11, 38696–38707 (2023a)

    Article  Google Scholar 

  • Li, J., Wang, Z., Wang, Z., Wang, H., Zhou, X., Deng, Y., Yang, C., Liu, X.: Missing data reconstruction in attitude for quadrotor unmanned aerial vehicle based on deep regression model with different sensor failures. Inf. Fusion 93, 243–257 (2023b)

    Article  Google Scholar 

  • Luo, J., Liu, W., Qi, W., Hu, J., Chen, J., Yang, C.: A vision-based virtual fixture with robot learning for teleoperation. Robot. Auton. Syst. 164, 104414 (2023)

    Article  Google Scholar 

  • Perrusquia, A.: Robust state/output feedback linearization of direct drive robot manipulators: a controllability and observability analysis. Eur. J. Control. 64, 100612 (2022)

    Article  MathSciNet  Google Scholar 

  • Qian, Y.-Y., Liu, L., Feng, G.: Event-triggered robust output regulation of uncertain linear systems with unknown exosystems. IEEE Trans. Syst. Man Cybern.: Syst. 51(7), 4139–4148 (2021)

    Article  Google Scholar 

  • Tiberkak, A., Hentout, A., Belkhir, A.: WebRTC-based MOSR remote control of mobile manipulators. Int. J. Intell. Robot. Appl. 7, 304–320 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Chen, Z., Xu, D.: A framework for global robust output regulation of nonlinear lower triangular systems with uncertain exosystems. IEEE Trans. Autom. Control 63(3), 894–901 (2018)

    Article  MathSciNet  Google Scholar 

  • Wang, S., Wu, Z., Wu, Z.-G.: The regulation controller design for linear random systems with an uncertain exosystem. Syst. Control Lett. 161, 105150 (2022)

    Article  MathSciNet  Google Scholar 

  • Zhai, A., Zhang, H., Wang, J., Lu, G., Li, J., Chen, S.: Adaptive neural synchronized impedance control for cooperative manipulators processing under uncertain environments. Robot. Comput. Integr. Manuf. 75, 102291 (2022)

    Article  Google Scholar 

  • Zhang, X., Liu, X.: Consensus of linear multi-agent systems with exogenous disturbance generated from heterogeneous exosystems. Int. J. Syst. Sci. 48(15), 3147–3159 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Zhang, X., Liu, X.: Containment of linear multi-agent systems with disturbances generated by heterogeneous nonlinear exosystems. Neurocomputing 315, 283–291 (2018)

    Article  Google Scholar 

  • Zhang, X., Li, G., Xiao, F., Jiang, D., Tao, B., Kong, J., Jiang, G., Liu, Y.: An inverse kinematics framework of mobile manipulator based on unique domain constraint. Mech. Mach. Theory 183, 105273 (2023)

    Article  Google Scholar 

  • Zhao, H., Zhan, J., Zhang, L.: Saturated boundary feedback stabilization for LWR traffic flow model. Syst. Control Lett. 173, 105465 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Authors thank the Instituto Politécnico Nacional, Consejo Nacional de Humanidades Ciencias y Tecnologías, Secretaría de Investigación y Posgrado, and Comisión de Operación y Fomento de Actividades Académicas for their help in this study.

Funding

This research was funded by the Secretaría de Investigación y Posgrado (SIP), and the Comisión de Operación y Fomento de Actividades Académicas (COFAA), both from the Instituto Politécnico Nacional, and by the Consejo Nacional de Humanidades Ciencias y Tecnologías (CONAHCYT), México.

Author information

Authors and Affiliations

Authors

Contributions

Investigation and formal analysis JdeJR, DAC; software and validation, MAH, EO, FJR; writing-original draft, review and editing GJG, JAM-C, CA-I. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to José de Jesús Rubio.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests regarding the publication of this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesús Rubio, J., Cordova, D.A., Hernandez, M.A. et al. References tracking and perturbations reconstruction in a Cartesian robot. Int J Intell Robot Appl (2024). https://doi.org/10.1007/s41315-023-00315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41315-023-00315-w

Keywords

Navigation