Skip to main content
Log in

Microstructural Evolution and Mechanical Properties of Laser Beam Welded AlxCoCrFeNi High Entropy Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

AlxCoCrFeNi high entropy alloy (HEA) system has received extensive attention of researchers as it shows a dynamic change in phase fraction and properties in response to variation in the Al content. In this study, AlxCoCrFeNi HEAs were welded using a laser beam welding and microstructural evolution and mechanical properties were studied using X-ray diffraction, electron backscatter diffraction, scanning electron microscopy, hardness and tensile tests. Results revealed that, the laser-welded Al0.3 alloy exhibited an increased tensile strength but a minor decrease in ductility as compared to that of the base metal (BM) Conversely, the laser-welded Al0.5 and Al0.7 alloys, characterized by a dual-phase structure, demonstrated a simultaneous decrease in both strength and ductility. The hardness of Al0.3 increased from 156 HV for base metal (BM) to 197 HV for weld zone (WZ). A drastic drop in the hardness in the fusion zone was observed for Al0.5 (from 242 HV for BM to 212 HV for WZ) and Al0.7 (from 387 HV for BM to 260 HV for WZ). The decrease in hardness for welded Al0.5 and Al0.7 alloy may be attributed to reduced fraction of secondary BCC/B2 phase in the microstructure. Texture analysis of the welded samples reveals columnar grains with a \(<100>\parallel {\text{ND}}\) texture fibre in the welded Al0.3 and Al0.5 alloys. However, the welded Al0.7 alloy has a dendritic structure with random texture due to the enhanced rate of constitutional supercooling arising from the higher fraction of secondary phases. The combined effect of changes in phase distribution, texture, and grain size might be the reasons for the variation in mechanical properties of the welded alloy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The data will be made available on request.

References

  1. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

    Article  ADS  CAS  Google Scholar 

  2. M. Wang, Z.L. Ma, Z.Q. Xu, X.W. Cheng, Designing VxNbMoTa refractory high-entropy alloys with improved properties for high-temperature applications. Scr. Mater. 191, 131–136 (2021). https://doi.org/10.1016/j.scriptamat.2020.09.027

    Article  CAS  Google Scholar 

  3. C. Zhang, C. Zhu, P. Cao, X. Wang, F. Ye, K. Kaufmann, L. Casalena, B.E. MacDonald, X. Pan, K. Vecchio, E.J. Lavernia, Aged metastable high-entropy alloys with heterogeneous lamella structure for superior strength-ductility synergy. Acta Mater. 199, 602–612 (2020). https://doi.org/10.1016/j.actamat.2020.08.043

    Article  ADS  CAS  Google Scholar 

  4. N.T.C. Nguyen, P. Asghari-Rad, P. Sathiyamoorthi, A. Zargaran, C.S. Lee, H.S. Kim, Ultrahigh high-strain-rate superplasticity in a nanostructured high-entropy alloy. Nat. Commun. 11, 1–7 (2020). https://doi.org/10.1038/s41467-020-16601-1

    Article  CAS  Google Scholar 

  5. J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw, J.T.M. De Hosson, Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater. 131, 206–220 (2017). https://doi.org/10.1016/j.actamat.2017.03.066

    Article  ADS  CAS  Google Scholar 

  6. F. Li, Y. Sha, X. Zeng, S. Zhang, T. Shi, B. Shen, Q. Shen, M. Liu, A new criterion for prediction of phase stability in Al-containing high entropy alloys. Phys. Status Solidi 258, 2000470 (2021). https://doi.org/10.1002/pssb.202000470

    Article  CAS  Google Scholar 

  7. P. Sathiyamoorthi, P. Asghari-Rad, J.M. Park, J. Moon, J.W. Bae, A. Zargaran, H.S. Kim, Exceptional cryogenic strength-ductility synergy in Al0.3CoCrNi medium-entropy alloy through heterogeneous grain structure and nano-scale precipitates. Mater. Sci. Eng. A 766, 138372 (2019). https://doi.org/10.1016/J.MSEA.2019.138372

    Article  CAS  Google Scholar 

  8. S. Gangireddy, B. Gwalani, V. Soni, R. Banerjee, R.S. Mishra, Contrasting mechanical behavior in precipitation hardenable AlxCoCrFeNi high entropy alloy microstructures: single phase FCC vs. dual phase FCC-BCC. Mater. Sci. Eng. A 739, 158–166 (2019). https://doi.org/10.1016/j.msea.2018.10.021

    Article  CAS  Google Scholar 

  9. J. Li, X. Meng, L. Wan, Y. Huang, Welding of high entropy alloys: progresses, challenges and perspectives. J. Manuf. Process. 68, 293–331 (2021). https://doi.org/10.1016/j.jmapro.2021.05.042

    Article  Google Scholar 

  10. S. Li, X. Hou, X. Wang, Z. Liu, Y. Xia, H. Dong, Weldability of high entropy alloys: microstructure, mechanical property, and corrosion resistance. J. Manuf. Process. 99, 209–229 (2023). https://doi.org/10.1016/j.jmapro.2023.05.049

    Article  Google Scholar 

  11. H. Nam, S. Park, E.J. Chun, H. Kim, Y. Na, N. Kang, Laser dissimilar weldability of cast and rolled CoCrFeMnNi high-entropy alloys for cryogenic applications. Sci. Technol. Weld. Join. 25, 127–134 (2020). https://doi.org/10.1080/13621718.2019.1644471

    Article  CAS  Google Scholar 

  12. S. Yebaji, T. Sudeep Kumar, A. Verma, H. Natu, D.S. Gowtam, T. Shanmugasundaram, Effect of post-welding treatment on corrosion behavior of laser and gas tungsten arc-welded (Fe50Mn30Co10Cr10)99C1 interstitial high-entropy alloy. JOM 75, 5568–5580 (2023)

    Article  ADS  CAS  Google Scholar 

  13. J. Fiocchi, R. Casati, A. Tuissi, C.A. Biffi, Laser beam welding of CoCuFeMnNi high entropy alloy: processing, microstructure, and mechanical properties. Adv. Eng. Mater. 24, 2200523 (2022). https://doi.org/10.1002/ADEM.202200523

    Article  CAS  Google Scholar 

  14. Z. Chen, B. Wang, B. Duan, X. Zhang, Mechanical properties and microstructure of laser welded FeCoNiCrMn high-entropy alloy. Mater. Lett. 262, 127060 (2020). https://doi.org/10.1016/j.matlet.2019.127060

    Article  CAS  Google Scholar 

  15. J. Shen, R. Gonçalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, J.P. Oliveira, Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 410 stainless steel filler metal. Mater. Sci. Eng. A 857, 144025 (2022). https://doi.org/10.1016/j.msea.2022.144025

    Article  CAS  Google Scholar 

  16. J. Shen, R. Gonçalves, Y.T. Choi, J.G. Lopes, J. Yang, N. Schell, H.S. Kim, J.P. Oliveira, Microstructure and mechanical properties of gas metal arc welded CoCrFeMnNi joints using a 308 stainless steel filler metal. Scr. Mater. 222, 115053 (2023). https://doi.org/10.1016/j.scriptamat.2022.115053

    Article  CAS  Google Scholar 

  17. M. Zheng, J. Yang, J. Xu, J. Jiang, H. Zhang, J.P. Oliveira, X. Lv, J. Xue, Z. Li, Interfacial microstructure and strengthening mechanism of dissimilar laser al/steel joint via a porous high entropy alloy coating. J. Mater. Res. Technol. 23, 3997–4011 (2023). https://doi.org/10.1016/j.jmrt.2023.02.040

    Article  CAS  Google Scholar 

  18. E. Panina, N. Yurchenko, S. Zherebtsov, N. Stepanov, G. Salishchev, V. Ventzke, R. Dinse, N. Kashaev, Laser beam welding of a low density refractory high entropy alloy. Metals 9, 1351 (2019). https://doi.org/10.3390/met9121351

    Article  CAS  Google Scholar 

  19. M. Zhang, D. Wang, L. He, X. Ye, W. Zhang, Laser beam welding of AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater. Lett. 308, 131137 (2022). https://doi.org/10.1016/j.matlet.2021.131137

    Article  CAS  Google Scholar 

  20. R. Sokkalingam, S. Mishra, S.R. Cheethirala, V. Muthupandi, K. Sivaprasad, Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall. Mater. Trans. A 48, 3630–3634 (2017). https://doi.org/10.1007/s11661-017-4140-8

    Article  CAS  Google Scholar 

  21. R. Sokkalingam, K. Sivaprasad, V. Muthupandi, M. Duraiselvam, Characterization of laser beam welded Al0.5CoCrFeNi high-entropy alloy. Key Eng. Mater. 775, 448–453 (2018)

    Article  Google Scholar 

  22. S. Chen, Q. Liu, T. He, G. Lei, Inhomogeneity of microstructure and mechanics of laser welded CoCrFeNiAl0.3 high entropy alloy. Mater. Lett. 301, 130269 (2021). https://doi.org/10.1016/j.matlet.2021.130269

    Article  CAS  Google Scholar 

  23. J.D. Lord, B. Roebuck, R. Morrell, T. Lube, 25 year perspective Aspects of strain and strength measurement in miniaturised testing for engineering metals and ceramics. Mater. Sci. Technol. 26, 127–148 (2010). https://doi.org/10.1179/026708309X12584564052012

    Article  ADS  CAS  Google Scholar 

  24. L. Zhang, W. Harrison, M.A. Yar, S.G.R. Brown, N.P. Lavery, The development of miniature tensile specimens with non-standard aspect and slimness ratios for rapid alloy prototyping processes. J. Mater. Res. Technol. 15, 1830–1843 (2021). https://doi.org/10.1016/j.jmrt.2021.09.029

    Article  CAS  Google Scholar 

  25. A.M. Giwa, P.K. Liaw, K.A. Dahmen, J.R. Greer, Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi high entropy alloy. Extrem. Mech. Lett. 8, 220–228 (2016). https://doi.org/10.1016/J.EML.2016.04.013

    Article  Google Scholar 

  26. W.R. Wang, W.L. Wang, J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J. Alloys Compd. 589, 143–152 (2014). https://doi.org/10.1016/j.jallcom.2013.11.084

    Article  CAS  Google Scholar 

  27. A. Singh Negi, A. Sourav, M. Heilmaier, S. Biswas, S. Thangaraju, Quantitative phase prediction in dual-phase high-entropy alloys: computationally aided parametric approach. Phys. Status Solidi B 258, 2100106 (2021). https://doi.org/10.1002/pssb.202100106

    Article  ADS  CAS  Google Scholar 

  28. K.S. Kumar, Analytical modeling of temperature distribution, peak temperature, cooling rate and thermal cycles in a solid work piece welded by laser welding process. Procedia Mater. Sci. 6, 821–834 (2014). https://doi.org/10.1016/j.mspro.2014.07.099

    Article  CAS  Google Scholar 

  29. Y. Ma, B. Jiang, C. Li, Q. Wang, C. Dong, P.K. Liaw, F. Xu, L. Sun, The BCC/B2 morphologies in AlxNiCoFeCr high-entropy alloys. Metals 7, 57 (2017). https://doi.org/10.3390/met7020057

    Article  CAS  Google Scholar 

  30. Q. Tian, G. Zhang, K. Yin, W. Wang, W. Cheng, Y. Wang, The strengthening effects of relatively lightweight AlCoCrFeNi high entropy alloy. Mater Charact 151, 302–309 (2019). https://doi.org/10.1016/j.matchar.2019.03.006

    Article  CAS  Google Scholar 

  31. M.A. Tschopp, J.D. Miller, A.L. Oppedal, K.N. Solanki, Characterizing the local primary dendrite arm spacing in directionally solidified dendritic microstructures. Metall. Mater. Trans. A 45, 426–437 (2014). https://doi.org/10.1007/s11661-013-1985-3

    Article  CAS  Google Scholar 

  32. S. Guo, Phase selection rules for cast high entropy alloys: an overview. Mater. Sci. Technol. 31, 1223–1230 (2015). https://doi.org/10.1179/1743284715Y.0000000018

    Article  ADS  CAS  Google Scholar 

  33. L. Jiang, Y.P. Lu, H. Jiang, T.M. Wang, B.N. Wei, Z.Q. Cao, T.J. Li, Formation rules of single phase solid solution in high entropy alloys. Mater. Sci. Technol. 32, 588–592 (2016). https://doi.org/10.1179/1743284715Y.0000000130

    Article  ADS  CAS  Google Scholar 

  34. A. Manzoor, S. Pandey, D. Chakraborty, S.R. Phillpot, D.S. Aidhy, Entropy contributions to phase stability in binary random solid solutions. Npj Comput. Mater. 4, 1–10 (2018). https://doi.org/10.1038/s41524-018-0102-y

    Article  Google Scholar 

  35. S. Guo, C. Ng, J. Lu, C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011). https://doi.org/10.1063/1.3587228

    Article  ADS  CAS  Google Scholar 

  36. S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, J. Schroers, Phase selection motifs in high entropy alloys revealed through combinatorial methods: large atomic size difference favors BCC over FCC. Acta Mater. 166, 677–686 (2019). https://doi.org/10.1016/j.actamat.2019.01.023

    Article  ADS  CAS  Google Scholar 

  37. M. Aizenshtein, E. Priel, S. Hayun, Effect of pre-deformation and B2 morphology on the mechanical properties of Al0.5CoCrFeNi HEA. Mater. Sci. Eng. A 788, 139575 (2020). https://doi.org/10.1016/J.MSEA.2020.139575

    Article  CAS  Google Scholar 

  38. T.F. Flint, Y.L. Sun, Q. Xiong, M.C. Smith, J.A. Francis, Phase-field simulation of grain boundary evolution in microstructures containing second-phase particles with heterogeneous thermal properties. Sci. Rep. 9, 1–11 (2019). https://doi.org/10.1038/s41598-019-54883-8

    Article  CAS  Google Scholar 

  39. A. Sourav, S. Yebaji, S. Thangaraju, Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 793, 139877 (2020). https://doi.org/10.1016/J.MSEA.2020.139877

    Article  CAS  Google Scholar 

  40. I. Basu, V. Ocelík, J.T.M. De Hosson, Size dependent plasticity and damage response in multiphase body centered cubic high entropy alloys. Acta Mater. 150, 104–116 (2018). https://doi.org/10.1016/J.ACTAMAT.2018.03.015

    Article  ADS  CAS  Google Scholar 

  41. E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall. Mater. Trans. 30, 1223–1233 (1999). https://doi.org/10.1007/s11661-999-0272-9

    Article  Google Scholar 

  42. Y. Jin, M. Bernacki, G.S. Rohrer, A.D. Rollett, B. Lin, N. Bozzolo, Formation of annealing twins during recrystallization and grain growth in 304L austenitic stainless steel. Mater. Sci. Forum 753, 113–116 (2013). https://doi.org/10.4028/www.scientific.net/MSF.753.113

    Article  CAS  Google Scholar 

  43. T. Cao, J. Shang, J. Zhao, C. Cheng, R. Wang, H. Wang, The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys. Mater. Lett. 164, 344–347 (2016). https://doi.org/10.1016/J.MATLET.2015.11.016

    Article  CAS  Google Scholar 

  44. K. Huang, K. Marthinsen, Q. Zhao, R.E. Loge, The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials. Prog. Mater. Sci. 92, 284–359 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.004

    Article  CAS  Google Scholar 

  45. M. Annasamy, N. Haghdadi, A. Taylor, P. Hodgson, D. Fabijanic, Dynamic recrystallization behaviour of AlxCoCrFeNi high entropy alloys during high-temperature plane strain compression. Mater. Sci. Eng. A 745, 90–106 (2019). https://doi.org/10.1016/j.msea.2018.12.102

    Article  CAS  Google Scholar 

  46. O. Kwon, A.J. DeArdo, Interactions between recrystallization and precipitation in hot-deformed microalloyed steels. Acta Metall. Mater. 39, 529–538 (1991). https://doi.org/10.1016/0956-7151(91)90121-G

    Article  CAS  Google Scholar 

  47. S. Mahajan, C.S. Pande, M.A. Imam, B.B. Rath, Formation of annealing twins in f.c.c. crystals. Acta Mater. 45, 2633–2638 (1997). https://doi.org/10.1016/S1359-6454(96)00336-9

    Article  ADS  CAS  Google Scholar 

  48. J.P. Oliveira, T.M. Curado, Z. Zeng, J.G. Lopes, E. Rossinyol, J.M. Park, N. Schell, F.M. Braz Fernandes, H.S. Ki, Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater. Des. 189, 108505 (2020). https://doi.org/10.1016/j.matdes.2020.108505

    Article  CAS  Google Scholar 

  49. R. Badji, B. Bacroix, M. Bouabdallah, Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds. Mater Charact 62, 833–843 (2011). https://doi.org/10.1016/j.matchar.2011.06.001

    Article  CAS  Google Scholar 

  50. S. Mitra, K.S. Arora, B. Bhattacharya, S.B. Singh, Effect of welding speed on texture in laser-welded dual-phase steel. Metall. Mater. Trans. A 51, 2915–2926 (2020). https://doi.org/10.1007/s11661-020-05747-8

    Article  CAS  Google Scholar 

  51. Y.F. Kao, T.J. Chen, S.K. Chen, J.W. Yeh, Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0 ≤ x ≤ 2) high-entropy alloys. J. Alloys Compd. 488, 57–64 (2009). https://doi.org/10.1016/j.jallcom.2009.08.090

    Article  CAS  Google Scholar 

  52. J. Joseph, N. Stanford, P. Hodgson, D.M. Fabijanic, Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J. Alloys Compd. 726, 885–895 (2017). https://doi.org/10.1016/j.jallcom.2017.08.067

    Article  CAS  Google Scholar 

  53. S. Chen, H.S. Oh, B. Gludovatz, S.J. Kim, E.S. Park, Z. Zhang, R.O. Ritchie, Q. Yu, Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nat. Commun. 11, 1–8 (2020). https://doi.org/10.1038/s41467-020-14641-1

    Article  CAS  Google Scholar 

  54. E. Ma, X. Wu, Tailoring heterogeneities in high-entropy alloys to promote strength–ductility synergy. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-13311-1

    Article  ADS  CAS  Google Scholar 

  55. C.C. Koch, Optimization of strength and ductility in nanocrystalline and ultrafine grained metals. Scr. Mater. 49, 657–662 (2003). https://doi.org/10.1016/S1359-6462(03)00394-4

    Article  CAS  Google Scholar 

  56. S.R. Reddy, S. Yoshida, T. Bhattacharjee, N. Sake, A. Lozinko, S. Guo, P.P. Bhattacharjee, N. Tsuji, Nanostructuring with structural-compositional dual heterogeneities enhances strength-ductility synergy in eutectic high entropy alloy. Sci. Rep. 9, 1–9 (2019). https://doi.org/10.1038/s41598-019-47983-y

    Article  CAS  Google Scholar 

  57. T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 1–8 (2018). https://doi.org/10.1038/s41598-018-21385-y

    Article  ADS  CAS  Google Scholar 

  58. M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 4, 145–151 (2016). https://doi.org/10.1080/21663831.2016.1153004

    Article  CAS  Google Scholar 

  59. B. Gwalani, V. Soni, M. Lee, S.A. Mantri, Y. Ren, R. Banerjee, Optimizing the coupled effects of Hall–Petch and precipitation strengthening in a Al0.3CoCrFeNi high entropy alloy. Mater. Des. 121, 254–260 (2017). https://doi.org/10.1016/j.matdes.2017.02.072

    Article  CAS  Google Scholar 

  60. C.S. Pande, B.B. Rath, M.A. Imam, Effect of annealing twins on Hall–Petch relation in polycrystalline materials. Mater. Sci. Eng. A 367, 171–175 (2004). https://doi.org/10.1016/j.msea.2003.09.100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study received support from the Defence Institute of Advanced Technology, Pune, under the grant DIAT/F/Adm/Project/OM/Mate/Corr/P49 and NRB-501/MAT/22-23. The authors extend their deep appreciation to Dr. C.P. Ramanarayanan, Vice Chancellor of DIAT (DU), for his invaluable support throughout this research endeavor. Additionally, the authors express their gratitude to the Director of the Defence Metallurgical Research Laboratory (DMRL) and Dr. I. Balasundar for granting access to the heat treatment facility, which was instrumental in the execution of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugasundaram Thangaraju.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 597 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourav, A., Chelvane, A., Niranjani, V.L. et al. Microstructural Evolution and Mechanical Properties of Laser Beam Welded AlxCoCrFeNi High Entropy Alloys. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01621-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01621-5

Keywords

Navigation