Skip to main content
Log in

The contribution of local shrubs to the carbon footprint reduction of traditional dairy systems in Cundinamarca, Colombia

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Cattle farming is responsible for about 15% of Colombia's greenhouse gas emissions (GHGE). In the department of Cundinamarca, specialized dairy farms located in the high tropics contribute 14% of the national milk production, and 94% of them are small-scale producers. Therefore, mitigation strategies for dairy farms are needed to achieve national GHGE reduction targets. This study aims to quantify the carbon footprint (CF), through a Life cycle Assessment Methodology, of 82 specialized dairy farms at the farm gate in 3 regions of Cundinamarca: Central Savannah, West Savannah and Ubate Valley; and to identify the contribution of Acacia decurrens, Baccharis latifolia, and Sambucus peruviana to milk production increases and GHGE mitigation potential. The comparison of the effect of the tree species on the measured variables was carried out by analysis of variance under a completely random design. GHGE were calculated using the 2019 Refinement to 2006 IPCC guidelines and impact factors from databases. The emission factor for enteric methane from cows was estimated by considering the equation proposed by Niu et al. (Glob Chang Biol 24:3368–3389, 2018). The functional units corresponded to one kg fat and protein-corrected milk (FPCM) and one kg live weight gain in a cradle-to-farm-gate approach. For the 3 regions, enteric fermentation and manure left on pasture were the main on-farm sources of GHGE, and feed manufacturing was the main off-farm source. Milk CFs ranged from 1.5 to 2.2 kg CO2-eq kg FPCM−1. The inclusion Acacia decurrens, Baccharis latifolia, and Sambucus peruviana in cattle diets reduced the milk CF by 13–26% and increased milk yield by 19–37% in the three regions. Therefore, the inclusion of locally available forages in dairy cattle diets is a potential sustainable GHGE mitigation option that dairy farmers, from the Colombian high tropics, can adopt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Apdini T, Al Zahra W, Oosting SJ, de Boer IJM, de Vries M, Engel B, van Middelaar CE (2021) Understanding variability in greenhouse gas emission estimates of smallholder dairy farms in Indonesia. Int J Life Cycle Assess 26:1160–1176. https://doi.org/10.1007/s11367-021-01923-z

    Article  CAS  Google Scholar 

  • Arango J, Ruden A, Martinez-Baron D, Loboguerrero AM, Berndt A, Chacón M, Torres CF, Oyhantcabal W, Gomez CA, Ricci P, Ku-Vera J, Burkart S, Moorby JM, Chirinda N (2020) Ambition meets reality: achieving GHG emission reduction targets in the livestock sector of Latin America. Front Sustain Food Syst 4:65. https://doi.org/10.3389/fsufs.2020.00065

    Article  Google Scholar 

  • Ariza-Nieto C, Mayorga OL, Mojica B, Parra D, Afanador-Tellez G (2018) Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J near Infrared Spectrosc 26:44–52. https://doi.org/10.1177/0967033517746900

    Article  CAS  Google Scholar 

  • Astaíza-Martínez JM, Muñoz-Ordóñez MR, Benavides-Melo CJ, Vallejo-Timarán DA, Chaves-Velásquez CA (2017) Caracterización técnica y productiva de los sistemas de producción lechera del valle de Sibundoy, Putumayo (Colombia). Rev Med Vet (bogota) 1:31. https://doi.org/10.19052/mv.4253

    Article  Google Scholar 

  • Bartl K, Gómez CA, Nemecek T (2011) Life cycle assessment of milk produced in two smallholder dairy systems in the highlands and the coast of Peru. J Clean Prod 19:1494–1505. https://doi.org/10.1016/j.jclepro.2011.04.010

    Article  Google Scholar 

  • Battini F, Agostini A, Tabaglio V, Amaducci S (2016) Environmental impacts of different dairy farming systems in the Po valley. J Clean Prod 112:91–102. https://doi.org/10.1016/j.jclepro.2015.09.062

    Article  Google Scholar 

  • Bava L, Sandrucci A, Zucali M, Guerci M, Tamburini A (2014) How can farming intensification affect the environmental impact of milk production? J Dairy Sci 97:4579–4593. https://doi.org/10.3168/jds.2013-7530

    Article  CAS  PubMed  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. https://doi.org/10.1890/08-1140.1

    Article  CAS  PubMed  Google Scholar 

  • Bonnet O, Hagenah N, Hebbelmann L, Meuret M, Shrader AM (2011) Is hand plucking an accurate method of estimating bite mass and instantaneous intake of grazing herbivores? Rangel Ecol Manag 64:366–374. https://doi.org/10.2111/REM-D-10-00186.1

    Article  Google Scholar 

  • Carulla JE, Ortega E (2016) Sistemas de producción lechera en Colombia: retos y oportunidades. Arch Latinoam Prod Anim 24(83):87

    Google Scholar 

  • Carvajal T, Lamela L, Cuesta A (2012) Evaluación de las arbóreas Sambucus nigra y Acacia decurrens como suplemento para vacas lecheras en la Sabana de Bogotá, Colombia. Pastos y Forrajes 35:417–430

    Google Scholar 

  • Cederberg C, Mattsson B (2000) Life cycle assessment of milk production - a comparison of conventional and organic farming. J Clean Prod 8:49–60. https://doi.org/10.1016/S0959-6526(99)00311-X

    Article  Google Scholar 

  • Cederberg C, Stadig M (2003) System expansion and allocation in life cycle assessment of milk and beef production. Int J Life Cycle Assess 8:350–356

    Article  Google Scholar 

  • Cederberg C, Persson UM, Neovius K, Molander S, Clift R (2011) Including carbon emissions from deforestation in the carbon footprint of brazilian beef. Environ Sci Technol 45:1773–1779. https://doi.org/10.1021/es103240z

    Article  CAS  PubMed  Google Scholar 

  • Cortez-Arriola J, Groot JCJ, Améndola Massiotti RD, Scholberg JMS, Aguayo VM et al (2014) Resource use efficiency and farm productivity gaps of smallholder dairy farming in North-west Michoacán, Mexico. Agric Syst 126:15–24. https://doi.org/10.1016/j.agsy.2013.11.001

    Article  Google Scholar 

  • Dalgaard T, Halberg N, Kristensen IS (1998) Can organic farming help to reduce N-losses? experiences from Denmark. Nutr Cycl Agroecosyst 52:277–287. https://doi.org/10.1023/a:1009790722044

    Article  Google Scholar 

  • Dalgaard R, Schmidt J, Flysjö A (2014) Generic model for calculating carbon footprint of milk using four different life cycle assessment modelling approaches. J Clean Prod 73:146–153. https://doi.org/10.1016/j.jclepro.2014.01.025

    Article  Google Scholar 

  • DANE (2020) Boletín Técnico Producto Interno Bruto ( PIB ). Primer Trimestre 2020:1–44

    Google Scholar 

  • de Léis CM, Cherubini E, Ruviaro CF, Prudêncio da Silva V, do Nascimento Lampert V, Spies A, Soares SR (2015) Carbon footprint of milk production in Brazil: a comparative case study. Int J Life Cycle Assess 20:46–60. https://doi.org/10.1007/s11367-014-0813-3

    Article  CAS  Google Scholar 

  • del Prado A, Mas K, Pardo G, Gallejones P (2013) Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain. Sci Total Environ 465:156–165. https://doi.org/10.1016/j.scitotenv.2013.03.064

    Article  CAS  PubMed  Google Scholar 

  • Flysjö A, Cederberg C, Henriksson M, Ledgard S (2011a) How does co-product handling affect the carbon footprint of milk? Case study of milk production in New Zealand and Sweden. Int J Life Cycle Assess 16:420–430. https://doi.org/10.1007/s11367-011-0283-9

    Article  CAS  Google Scholar 

  • Flysjö A, Henriksson M, Cederberg C, Ledgard S, Englund J-E (2011b) The impact of various parameters on the carbon footprint of milk production in New Zealand and Sweden. Agric Syst 104:459–469. https://doi.org/10.1016/j.agsy.2011.03.003

    Article  Google Scholar 

  • Flysjö A, Cederberg C, Henriksson M, Ledgard S (2012) The interaction between milk and beef production and emissions from land use change—critical considerations in life cycle assessment and carbon footprint studies of milk. J Clean Prod 28:134–142. https://doi.org/10.1016/j.jclepro.2011.11.046

    Article  Google Scholar 

  • Gaitán L, Läderach P, Graefe S, Rao I, van der Hoek R (2016) Climate-smart livestock systems: an assessment of carbon stocks and GHG emissions in Nicaragua. PLoS ONE. https://doi.org/10.1371/journal.pone.0167949

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerber P, Vellinga T, Opio C, Henderson B, Steinfeld H (2010) Greenhouse gas emissions from the dairy sector: a life cycle assessment. Food and agriculture organization of the United Nations (FAO), Rome

    Google Scholar 

  • Gerber P, Vellinga T, Opio C, Steinfeld H (2011) Productivity gains and greenhouse gas emissions intensity in dairy systems. Livest Sci 139:100–108. https://doi.org/10.1016/J.LIVSCI.2011.03.012

    Article  Google Scholar 

  • Gerssen-Gondelach SJ, Lauwerijssen RBG, Havlík P, Herrero M, Valin H, Faaij APC, Wicke B (2017) Intensification pathways for beef and dairy cattle production systems: impacts on GHG emissions, land occupation and land use change. Agric Ecosyst Environ 240:135–147. https://doi.org/10.1016/j.agee.2017.02.012

    Article  Google Scholar 

  • González-Quintero R, Bolívar-Vergara DM, Chirinda N, Arango J, Pantevez H, Barahona-Rosales R, Sánchez-Pinzón MS (2021a) Environmental impact of primary beef production chain in Colombia: carbon footprint, non-renewable energy and land use using life cycle assessment. Sci Total Environ 773:145573. https://doi.org/10.1016/j.scitotenv.2021.145573

    Article  CAS  PubMed  Google Scholar 

  • González-Quintero R, Kristensen T, Sánchez-Pinzón MS, Bolívar-Vergara DM, Chirinda N, Arango J, Pantevez H, Barahona-Rosales R, Knudsen MT (2021b) Carbon footprint, non-renewable energy and land use of dual-purpose cattle systems in Colombia using a life cycle assessment approach. Livest Sci 244:104330. https://doi.org/10.1016/j.livsci.2020.104330

    Article  Google Scholar 

  • González-Quintero R, van Wijk MT, Ruden A, Gómez M, Pantevez H, Castro-Llanos F, Notenbaert A, Arango J (2022) Yield gap analysis to identify attainable milk and meat productivities and the potential for greenhouse gas emissions mitigation in cattle systems of Colombia. Agric Syst 195:103303. https://doi.org/10.1016/J.AGSY.2021.103303

    Article  Google Scholar 

  • Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, Wirsenius S, Hristov AN, Gerber P, Gill M, Butterbach-Bahl K, Valin H, Garnett T, Stehfest E (2016) Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang 6:452–461. https://doi.org/10.1038/nclimate2925

    Article  Google Scholar 

  • IPCC, 2014. Fifth Assessment Report (AR5). Synthesis Report (SYR), Climate Change (2014) Synthesis report. Contrib Work Groups I, II III Fifth Assess Rep Intergovernmental Panel Clim Change. https://doi.org/10.1017/CBO9781107415324

    Article  Google Scholar 

  • Kristensen T, Mogensen L, Knudsen MT, Hermansen JE (2011) Effect of production system and farming strategy on greenhouse gas emissions from commercial dairy farms in a life cycle approach. Livest Sci 140:136–148. https://doi.org/10.1016/j.livsci.2011.03.002

    Article  Google Scholar 

  • Lizarralde C, Picasso V, Rotz CA, Cadenazzi M, Astigarraga L (2014) Practices to reduce milk carbon footprint on grazing dairy farms in southern Uruguay: case studies. Sustain Agric Res. https://doi.org/10.5539/sar.v3n2p1

    Article  Google Scholar 

  • Marton SMRR, Zimmermann A, Kreuzer M, Gaillard G (2016) Comparing the environmental performance of mixed and specialised dairy farms: the role of the system level analysed. J Clean Prod 124:73–83. https://doi.org/10.1016/j.jclepro.2016.02.074

    Article  CAS  Google Scholar 

  • Mazzetto AM, Bishop G, Styles D, Arndt C, Brook R, Chadwick D (2020) Comparing the environmental efficiency of milk and beef production through life cycle assessment of interconnected cattle systems. J Clean Prod 277:124108. https://doi.org/10.1016/j.jclepro.2020.124108

    Article  Google Scholar 

  • Nguyen TTH, Doreau M, Corson MS, Eugène M, Delaby L, Chesneau G, Gallard Y, Van DW (2013) Effect of dairy production system, breed and co-product handling methods on environmental impacts at farm level. J Environ Manage 120:127–137. https://doi.org/10.1016/j.jenvman.2013.01.028

    Article  CAS  PubMed  Google Scholar 

  • Nielsen AH, Kristensen IS (2005) Nitrogen and phosphorus surpluses on Danish dairy and pig farms in relation to farm characteristics. Livest Prod Sci 96:97–107. https://doi.org/10.1016/J.LIVPRODSCI.2005.05.012

    Article  Google Scholar 

  • Niu M, Kebreab E, Hristov AN, Oh J, Arndt C, Bannink A, Bayat AR, Brito AF, Boland T, Casper D, Crompton LA, Dijkstra J, Eugène MA, Garnsworthy PC, Haque MN, Hellwing ALF, Huhtanen P, Kreuzer M, Kuhla B, Lund P, Madsen J, Martin C, McClelland SC, McGee M, Moate PJ, Muetzel S, Muñoz C, O’Kiely P, Peiren N, Reynolds CK, Schwarm A, Shingfield KJ, Storlien TM, Weisbjerg MR, Yáñez-Ruiz DR, Yu Z (2018) Prediction of enteric methane production, yield, and intensity in dairy cattle using an intercontinental database. Glob Chang Biol 24:3368–3389. https://doi.org/10.1111/GCB.14094

    Article  PubMed  PubMed Central  Google Scholar 

  • Penati C, Berentsen PBM, Tamburini A, Sandrucci A, de Boer IJM (2011) Effect of abandoning highland grazing on nutrient balances and economic performance of Italian Alpine dairy farms. Livest Sci 139:142–149. https://doi.org/10.1016/J.LIVSCI.2011.03.008

    Article  Google Scholar 

  • Ribeiro-Filho HMN, Civiero M, Kebreab E (2020) Potential to reduce greenhouse gas emissions through different dairy cattle systems in subtropical regions. PLoS ONE 15:e0234687. https://doi.org/10.1371/journal.pone.0234687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice P, O’Brien D, Shalloo L, Holden NM (2017) Evaluation of allocation methods for calculation of carbon footprint of grass-based dairy production. J Environ Manage 202:311–319. https://doi.org/10.1016/j.jenvman.2017.06.071

    Article  CAS  PubMed  Google Scholar 

  • Salvador S, Corazzin M, Romanzin A, Bovolenta S (2017) Greenhouse gas balance of mountain dairy farms as affected by grassland carbon sequestration. J Environ Manage 196:644–650. https://doi.org/10.1016/j.jenvman.2017.03.052

    Article  CAS  PubMed  Google Scholar 

  • Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, De-Haan C (2006) Livestock’s Long Shadow: environmental Issues and options. Livestock’s Long Shadow Environ Issues Opt Rome. https://doi.org/10.1007/s10666-008-9149-3

    Article  Google Scholar 

  • Thoma G, Jolliet O, Wang Y (2013) A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. Int Dairy J. https://doi.org/10.1016/j.idairyj.2012.08.012

    Article  Google Scholar 

  • Tichenor NE, Peters CJ, Norris GA, Thoma G, Griffin TS (2017) Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States. J Clean Prod 142:1619–1628. https://doi.org/10.1016/j.jclepro.2016.11.138

    Article  Google Scholar 

  • Williams G, Anderson D (2019) The Latin American livestock industry: growth and challenges. Choices 34:1–11

    Google Scholar 

  • Ariza-Nieto C, Mayorga-Mogollón OL, Guadrón-Duarte L, Valencia-Echavarría DM, Mestra-Vargas LI, Santana-Rodríguez MO, Ortiz-Cuadros RE, Pérez-Almario N, Camargo Hernández DB, Carvajal Bazurto CT, Parra Forero DM, Sierra Alarcón AM (2020) Alimentro: El valor nutricional de recursos forrajeros de Colombia. Sistema de información. Corporación Colombiana de Investigación Agropecuaria -agrosavia, Mosquera, Cundinamarca. https://doi.org/10.21930/agrosavia.brochure.7403824

  • Avellaneda Y (2013) Canasta de alimentos en ganadería bovina. Bogotá D.C

  • Benavides-Patiño LM (2016) Análisis energético y balance de nitrógeno a escala predial en sistemas ganaderos de lechería especializada en el norte de Antioquia con diferentes niveles de intensificación

  • BSI and Carbon Trust (2011) Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. London, UK

  • Cárdenas CA, Rocha C, Mora Delgado JR (2011) Productividad y preferencia de forraje de vacas lecheras pastoreando un sistema silvopastoril intensivo de la zona alto Andina de Roncesvalles, Tolima. Revista Colombiana de Ciencia Animal 4

  • Ministerio de Agricultura y Desarrollo Rural (2021) Cifras sectoriales - Sector lácteo

  • EVA (2018) Evaluaciones Agropecuarias Municipales. Estadísticas agropecuarias departamento de Cundinamarca

  • FAO (2016) Environmental performance of large ruminant supply chains

  • FAO (2018) FAOSTAT: statistical database. [WWW Document]. FAOSTAT: Statistical database

  • Fedegan (2014) Ganadería regional visión 2014–2018 Cundinamarca. Bogotá D.C

  • Fedegan (2018) Ganadería Colombiana hoja de ruta 2018–2022

  • Gavrilova O, Leip A, Dong H, MacDonald JD, Gomez Bravo CA, Amon B, Barahona Rosales R, Del Prado A, Oyhantçabal W, Van Der Weerden Tj, Widiawati Y (2019) Emissions from livestock and manure management. In: 2019 Refinement to the 2006 guidelines for national greenhouse gas inventories. agriculture, forestry and other land use. Geneve: IPCC, 2019. V. 4. Cap. 10

  • Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, Falcucci A, Tempio G, others (2013) Tackling climate change through livestock

  • Gualdron-Calderón E, Padilla-Charry CE (2007) Producción y calidad de leche en vacas Holstein en dos arreglos silvopastoriles de Acacia decurrens y Alnus acuminata asociadas con pasto kikuyo, Pennisetum clandestinum. Zootecnia. Bogots D.C

  • Hergoualc’h K, Akiyama H, Bernoux M, Chirinda N, del Prado A, Kasimir Å, van der Weerden TJ (2019) N2O emissions from managed soils, and CO2 emissions from lime and urea application. In: 2019 Refinement to the 2006 guidelines for national greenhouse gas inventories. Agriculture, Forestry and Other Land Use. Geneve: IPCC, 2019. v. 4. Cap. 11

  • Hernández M (2011) Cartilla 2 Principales especies arbóreas y arbustivas usadas en sistemas silvopastoriles de la región del SumapazColombia. Universidad de Cundinamarca, Fusagasugá, COL

  • ICA (2020a) Censo nacional pecuario [WWW Document]. URL https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018

  • ICA (2020b) Censo Pecuario Nacional 2020. Bogotá D.C

  • IDF (2015) A common carbon footprint approach for the dairy sector. The IDF guide to standard life cycle assessment methodology. Bulletin of the international Dairy Federation 479/2015. Brussels

  • IDF (2022) The IDF global Carbon Footprint standard for the dairy sector. In: Bulletin of the international Dairy Federation 520/2022

  • IPCC (2006) IPCC guidelines for national greenhouse gas inventories, agriculture, forestry and other land use. 2006. Geneva, Switzerland

  • ISO (2006) Environmental management—life cycle assessment: requirements and guidelines (ISO 14044)

  • Mbow C, Rosenzweig C, Barioni LG, Benton TG, Herrero M, Krishnapillai M, Waha K (2019) Chapter 5: food security. IPCC special report on climate change and land

  • Ministry of Environment and Sustainable Development (2020) Colombia reducirá en un 51% sus emisiones de gases efecto invernadero para el año 2030 | Ministerio de Ambiente y Desarrollo Sostenible [WWW Document]. URL https://www.minambiente.gov.co/index.php/noticias/4877-colombia-reducira-en-un-51-sus-emisiones-de-gases-efecto-invernadero-para-el-ano-2030 (Accessed 2.22.21)

  • Molina-Botero IC, Gaviria-Uribe X, Rios-Betancur JP, Medina-Campuzano M, Toro-Trujillo M, González-Quintero R, Ospina B, Arango J (2024) Methane emission, carbon footprint and productivity of specialized dairy cows supplemented with bitter cassava (Manihot esculenta Crantz). Animals 14:19. https://doi.org/10.3390/ani14010019

  • OCDE/FAO (2019) OCDE-FAO Perspectivas Agrícolas 2019–2028, OCDE-FAO Perspectivas Agrícolas. OECD, Roma. https://doi.org/10.1787/7B2E8BA3-ES

  • Pulido JI (2005) Caracterización de los sistemas de producción de leche del trópico de altura en los departamentos de Boyacá y Cundinamarca. Bogotá D.C.

  • Rivera JE, Arenas FA, Rivera R, Benavides LM, Sánchez J, Barahona-Rosales R (2014) Análisis de ciclo de vida en la producción de leche: comparación de dos hatos de lechería especializada. Livestock Res Rural Develop 6

  • Rivera JE, Chará J, Murgueitio E, Barahona-Rosales R (2015) Estimación de la huella de carbono en sistemas silvopastoriles intensivos y convencionales para la producción de leche bovina en Colombia. In: 3° Congreso Nacional de Sistemas Silvopastoriles y VIII Congreso Internacional de Sistemas Agroforestales

  • Rodriguez J, Llano M, Fonseca B (2018) Estudio sectorial sobre la producción cárnica bovina en la región Caribe. Bogotá

  • UPRA (2020a) Cadena láctea colombiana. Analisis situacional cadena láctea. Bogotá

  • UPRA (2020b) Plan de ordenamiento productivo cadena láctea. Bogota DC

Download references

Funding

This work was supported by MINCIENCIAS (call 828 of 2018 and call 891 of 2020).

Author information

Authors and Affiliations

Authors

Contributions

RGQ: Conceptualization, Funding acquisition, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft. AMSA: Conceptualization, review & editing. JCBC: Review & editing. OLMM: Project administration, Funding acquisition, Supervision, Conceptualization, Visualization, review & editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ricardo González-Quintero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Quintero, R., Sierra-Alarcón, A.M., Benavides-Cruz, J.C. et al. The contribution of local shrubs to the carbon footprint reduction of traditional dairy systems in Cundinamarca, Colombia. Agroforest Syst 98, 873–890 (2024). https://doi.org/10.1007/s10457-024-00958-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-024-00958-z

Keywords

Navigation