Skip to main content
Log in

Long time behavior of solutions of an electroconvection model in \({\mathbb {R}}^2\)

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider a two dimensional electroconvection model which consists of a nonlinear and nonlocal system coupling the evolutions of a charge distribution and a fluid. We show that the solutions decay in time in \(L^2({{\mathbb {R}}}^2)\) at the same sharp rate as the linear uncoupled system. This is achieved by proving that the difference between the nonlinear and linear evolution decays at a faster rate than the linear evolution. In order to prove the sharp \(L^2\) decay we establish bounds for decay in \(H^2({{\mathbb {R}}}^2)\) and a logarithmic growth in time of a quadratic moment of the charge density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Abdo, M. Ignatova, Long time dynamics of a model of electroconvection, Trans. Amer. Math. Soc. 374, 5849–5875 (2021).

    Article  MathSciNet  Google Scholar 

  2. C. Amrouche, V. Girault, M.E. Schonbek, T.P. Schonbek, Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations, SIAM J. Math. Anal. 31, 740–753 (2000).

    Article  MathSciNet  Google Scholar 

  3. C. Bjorland, C.J. Niche, On the decay of infinite energy solutions to the Navier-Stokes equations in the plane, Physica D: Nonlinear Phenomena 240 (7), 670–674 (2011).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  4. C. Bjorland , M.E. Schonbek, On questions of decay and existence for the viscous camassa-holm equations, Ann. I. H. Poincaré-NA 25, 907–936 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  5. A.P. Calderón, Singular Integrals, Bull. Amer. Math. Soc. 72, 427–465 (1966).

    Article  MathSciNet  Google Scholar 

  6. A. Córdoba, D. Córdoba, A maximum principle applied to quasi-geostrophic equations, Comm. Math. Phys. 249, 511–528 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  7. P. Constantin, T. Elgindi, M. Ignatova, V. Vicol, On some electroconvection models, Journal of Nonlinear Science 27, 197–211 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  8. P. Constantin, J. Wu, Behavior of solutions of 2D quasi-geostrophic equations, SIAM J. Math. Anal. 30, 937–948 (1999).

    Article  MathSciNet  Google Scholar 

  9. Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, J.R. de Bruyn, Annular electroconvection with shear, Phys. Rev. Lett. 80, 964–967 (1998).

    Article  ADS  CAS  Google Scholar 

  10. B. Dong, Y. Li, Large time behavior to the system of incompressible non-newtonian fluds in \({\mathbb{R}}^2\), J. Math. Anal. Appl. 298,667–676 (2004).

    Article  MathSciNet  Google Scholar 

  11. R. Kajikiya, T. Miyakawa, On \(L^2\) decay of weak solutions of the Navier-Stokes equations in \({\mathbb{R}}^{n}\), Math. Z. 192, 135–148 (1986).

    Article  MathSciNet  Google Scholar 

  12. I. Kukavica, On the weighted decay for solutions of the Navier-Stokes system, Nonlinear Analysis: Theory, Methods and Applications 70 (6), 2466–2470 (2009).

    Article  MathSciNet  Google Scholar 

  13. I. Kukavica, Space-time decay for Solutions of the Navier-Stokes equations, Indiana Univ. Math. J. 50, 205–222(2001).

    Article  MathSciNet  Google Scholar 

  14. J. Leray, Sur le mouvement d’un liquide visquex emplissant l’espace, Acta Math. 63, 193–248(1934).

    Article  MathSciNet  Google Scholar 

  15. C.J. Niche , M.E. Schonbek , Decay of weak solutions to the 2d dissipative quasi-geostrophic equation, Comm. Math. Phys. 276, 93–115 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Oliver, E.S. Titi, Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in \({\mathbb{R}}^{n}\), J. Funct. Anal. 172, 1–18 (2000).

    Article  MathSciNet  Google Scholar 

  17. M.E. Schonbek, \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal. 88, 209–222 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  18. M.E. Schonbek, Uniform decay rated for parabolic conservations laws, Nonlinear Analysis: Theory, Methods and Applications 10, 943–956 (1986).

    Article  Google Scholar 

  19. M.E. Schonbek, T.P.  Schonbek, Asymptotic Behavior to Dissipative Quasi-Geostrophic Flows, SIAM Journal on Mathematical Analysis 35 (2), 357–375 (2003).

    Article  MathSciNet  Google Scholar 

  20. M.E. Schonbek, M. Wiegner, On the decay of higher-order norms of the solutions of Navier-Stokes equations, Proc. Roy. Soc. Edinburgh Sect. A 126, 677–685 (1996).

    Article  MathSciNet  Google Scholar 

  21. S. Takahashi, A weigthed equation approach to decay rate estimates for the Navier-Stokes equations, Nonlinear Anal. 37, 751–789 (1999).

    Article  MathSciNet  Google Scholar 

  22. P. Tsai, Z. Daya, S. Morris, Charge transport scaling in turbulent electroconvection, Phys. Rev E 72, 046311-1-12 (2005).

  23. P. Tsai, Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, Direct numerical simulation of supercritical annular electroconvection, Phys. Rev E 76, 1–11 (2007).

    Article  Google Scholar 

  24. M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations on \({\mathbb{R}}^{n}\), J. London Math. Soc. 35, 303–313 (1987).

    Article  MathSciNet  Google Scholar 

  25. X. Zhao, Asymptotic behavior of solutions to a new hall-MHD system, Acta Applicandae Mathematicae 157, 205–216 (2018).

    Article  MathSciNet  Google Scholar 

  26. C. Zhao, B. Li, Time decay rate of weak solutions to the generalized MHD equations in \({\mathbb{R}}^{2}\), Appl. Math. Comput. 292, 1–8 (2017).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Ignatova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Existence and Uniqueness of Solutions

Appendix: Existence and Uniqueness of Solutions

In this appendix, we prove the existence of weak and strong solutions for the electroconvection model (1)–(5).

Definition 1

A solution (qu) of (1)–(5) is said to be a weak solution on [0, T] if it solves (1)–(5) in the sense of distributions, u is divergence-free in the sense of distributions,

$$\begin{aligned} u \in L^{\infty }(0,T;L^2) \cap L^2(0,T; H^1) \end{aligned}$$
(179)

and

$$\begin{aligned} q \in L^{\infty }(0,T; L^2) \cap L^2(0,T; H^{1/2}). \end{aligned}$$
(180)

Theorem 5

Let \(u_0\in L^2\) be divergence-free, let \(q_0\in L^2\). Let \(T > 0\) be arbitrary. There exists a weak solution (qu) of the system (1)–(5) on [0, T].

Proof

We briefly sketch the main ideas of the proof. For \(0 < \epsilon \le 1\), we consider a viscous approximation of (1)–(5) given by

$$\begin{aligned} {\left\{ \begin{array}{ll} \partial _t q^{\epsilon } + { u^{\epsilon } \cdot \nabla q^{\epsilon } }+ \Lambda q^{\epsilon } - \epsilon \Delta q^{\epsilon } = 0 \\ \partial _t u^{\epsilon } + { u^{\epsilon } \cdot \nabla u^{\epsilon }} - \Delta u^{\epsilon } + \nabla p^{\epsilon } = -{ q^{\epsilon } Rq^{\epsilon }} \\ \nabla \cdot u^{\epsilon } = 0 \end{array}\right. } \end{aligned}$$
(181)

with smoothed out initial data \(u_0^{\epsilon } = J_{\epsilon }u_0\) and \(q_0^{\epsilon }= J_{\epsilon }q_0\), where \(J_{\epsilon }\) is a standard mollifier operator. For each \(\epsilon > 0\), we consider the map

$$\begin{aligned} (q(t), u(t)) \mapsto \Phi _{\epsilon }((q,u))(t) = (e^{\epsilon t \Delta } J_{\epsilon }q_0 - {\mathcal {A}}^{\epsilon }_t (q^{\epsilon }, u^{\epsilon }), e^{t\Delta }J_{\epsilon }u_0 - {\mathcal {B}}^{\epsilon }_t (q^{\epsilon }, u^{\epsilon })) \end{aligned}$$
(182)

where

$$\begin{aligned} {\mathcal {A}}^{\epsilon }_t (q^{\epsilon }, u^{\epsilon }) = \int _{0}^{t} e^{\epsilon (t-s)\Delta } (u^{\epsilon } \cdot \nabla q^{\epsilon })(s) ds + \int _{0}^{t} e^{\epsilon (t-s)\Delta } \Lambda q^{\epsilon }(s) ds \end{aligned}$$
(183)

and

$$\begin{aligned} {\mathcal {B}}^{\epsilon }_t (q^{\epsilon }, u^{\epsilon }) = \int _{0}^{t} e^{(t-s)\Delta } {\mathbb {P}}(u^{\epsilon } \cdot \nabla u^{\epsilon })(s) ds + \int _{0}^{t} e^{(t-s)\Delta } {\mathbb {P}}(q^{\epsilon }Rq^{\epsilon })(s) ds. \end{aligned}$$
(184)

There exists a time \(T_{\epsilon } = T_{\epsilon } (\epsilon , \Vert u_0\Vert _{L^2}, \Vert q_0\Vert _{L^2}) > 0\) such that the map \(\Phi _{\epsilon }\) is a contraction on the Banach space

$$\begin{aligned} X_T = L^{\infty }(0,T; \bar{B}_{L^2} (2\Vert q_0\Vert _{L^2}) \oplus L^{\infty }(0,T; \bar{B}_{L^2_{\sigma }} (2\Vert u_0\Vert _{L^2}) \end{aligned}$$
(185)

where \(\bar{B}_{L^2}(r)\) is the closed ball in \(L^2\), and \(\bar{B}_{L^2_{\sigma }}\) is the closed ball in the space of \(L^2\) divergence-free vectors. Consequently, \(\Phi _{\epsilon }\) has a fixed point \((q^{\epsilon }, u^{\epsilon }) \in X_{T_{\epsilon }}\) solving (181). This solution extends to the time interval [0, T], and this can be obtained by establishing uniform-in-time bounds for \((q^{\epsilon }, u^{\epsilon })\) on [0, T]. Indeed, we have

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \left( \Vert \Lambda ^{-\frac{1}{2}}q^{\epsilon } \Vert _{L^2}^2 + \Vert u^{\epsilon } \Vert _{L^2}^2 \right) + \Vert q^{\epsilon }\Vert _{L^2}^2 + \Vert \nabla u^{\epsilon }\Vert _{L^2}^2 + \epsilon \Vert \Lambda ^{\frac{1}{2}}q^{\epsilon }\Vert _{L^2}^2 = 0 \end{aligned}$$
(186)

as shown in (11). Hence the family of mollified velocities \((u^{\epsilon })_{\epsilon }\) is uniformly bounded in \(L^{\infty }(0,T; L^2) \cap L^2(0,T; H^1)\). On the other hand, the \(L^2\) norm of \(q^{\epsilon }\) evolves according to

$$\begin{aligned} \frac{1}{2} \frac{d}{dt} \Vert q^{\epsilon }\Vert _{L^2}^2 + \Vert \Lambda ^{\frac{1}{2}} q^{\epsilon }\Vert _{L^2}^2 + \epsilon \Vert \nabla q^{\epsilon }\Vert _{L^2}^2 = 0, \end{aligned}$$
(187)

and so the family of mollified charge densities \((q^{\epsilon })_{\epsilon }\) is uniformly bounded in \(L^{\infty }(0,T; L^2) \cap L^2(0,T; H^{\frac{1}{2}})\). The \(q^{\epsilon }\) and \(u^{\epsilon }\) equations imply that the sequence of time derivatives \((\partial _t q^{\epsilon })_{\epsilon }\) and \((\partial _t u^{\epsilon })_{\epsilon }\) are uniformly bounded in \(L^{2}(0,T; H^{-\frac{3}{2}})\) and \(L^2(0,T; H^{-1})\) respectively. By the Aubin-Lions lemma, the sequence \(((q^{\epsilon }, u^{\epsilon }))_{\epsilon }\) has a subsequence that converges strongly in \(L^2(0,T; L^2)\) to a weak solution (qu) of (1)–(5). We omit further details. \(\square \)

Definition 2

A weak solution (qu) of (1)–(5) is said to be a strong solution on [0, T] if

$$\begin{aligned} u \in L^{\infty }(0,T;H^1) \cap L^2(0,T; H^2) \end{aligned}$$
(188)

and

$$\begin{aligned} q \in L^{\infty }(0,T; L^4) \cap L^2(0,T; H^{1/2}). \end{aligned}$$
(189)

Theorem 6

Let \(u_0\in H^1\) be divergence-free and \(q_0\in L^4\). Let \(T>0\) be arbitrary. There exists a unique strong solution (uq) of the system (1)–(5) on [0, T].

We take the \(L^2\) inner product of the equation satisfied by \(q^{\epsilon }\) in (181) with \((q^{\epsilon })^3\). In view of the divergence-free condition satisfied by \(u^{\epsilon }\), the nonlinear term vanishes, that is

$$\begin{aligned} \int _{{{\mathbb {R}}}^2} u^{\epsilon } \cdot \nabla q^{\epsilon } (q^{\epsilon })^3 dx = 0. \end{aligned}$$
(190)

By the Córdoba-Córdoba inequality ( [6]), we have

$$\begin{aligned} \int _{{{\mathbb {R}}}^2} (q^{\epsilon })^3 \Lambda q^{\epsilon } dx \ge 0 \end{aligned}$$
(191)

and

$$\begin{aligned} -\int _{{{\mathbb {R}}}^2} (q^{\epsilon })^3 \Delta q^{\epsilon } dx \ge 0. \end{aligned}$$
(192)

Consequently, we obtain

$$\begin{aligned} \frac{1}{4} \frac{d}{dt} \Vert q^{\epsilon }\Vert _{L^4}^4 \le 0 \end{aligned}$$
(193)

which yields the boundedness of q in \(L^{\infty } (0, T; L^4({{\mathbb {R}}}^2))\) by the Banach Alaoglu theorem and the lower semi-continuity of the norm. The \(L^2\) norm of \(\nabla u^{\epsilon }\) obeys the energy inequality

$$\begin{aligned} \frac{d}{dt} \Vert \nabla u^{\epsilon }\Vert _{L^2}^2 + \Vert \Delta u^{\epsilon }\Vert _{L^2}^2 \le C \Vert q^{\epsilon }\Vert _{L^4}^4 \end{aligned}$$
(194)

as shown in (81), yielding the boundedness of u in \(L^{\infty }(0,T; H^1) \cap L^2(0,T; H^2)\). Now we prove the uniqueness of strong solutions. Suppose \((q_1, u_1)\) and \((q_2, u_2)\) are strong solutions of (1)–(5) with same initial data. Let \(q = q_1 - q_2, u = u_1 - u_2\) and \(p = p_1 - p_2\). Then q satisfies

$$\begin{aligned} \partial _t q + \Lambda q = - u_1 \cdot \nabla q - u \cdot \nabla q_2 \end{aligned}$$
(195)

and u satisfies

$$\begin{aligned} \partial _t u - \Delta u + \nabla p = - qRq_1 - q_2Rq - u_1 \cdot \nabla u - u \cdot \nabla u_2. \end{aligned}$$
(196)

We take the \(L^2\) inner product of (195) with \(\Lambda ^{-1}q\) and the \(L^2\) inner product of (196) with u. We add the resulting energy equalities. We have a cancellation

$$\begin{aligned} - \int _{{{\mathbb {R}}}^2} (u \cdot \nabla q_2) \Lambda ^{-1} q dx - \int _{{{\mathbb {R}}}^2} (q_2Rq) \cdot u dx = 0 \end{aligned}$$
(197)

obtained from integration by parts. In view of the Ladyzhenskaya’s interpolation inequality, we estimate

$$\begin{aligned} \left| \int _{{{\mathbb {R}}}^2} (qRq_1) \cdot u dx \right|{} & {} \le C\Vert q\Vert _{L^2}\Vert q_1\Vert _{L^4}\Vert u\Vert _{L^2}^{\frac{1}{2}} \Vert \nabla u\Vert _{L^2}^{\frac{1}{2}} \le \frac{1}{4} \Vert \nabla u\Vert _{L^2}^2 + \frac{1}{4} \Vert q\Vert _{L^2}^2\nonumber \\{} & {} \quad \ + C\Vert q_1\Vert _{L^4}^4 \Vert u\Vert _{L^2}^2 \end{aligned}$$
(198)

and

$$\begin{aligned} \left| \int _{{{\mathbb {R}}}^2} (u \cdot \nabla u_2) \cdot u dx \right| \le \Vert u\Vert _{L^4}^2 \Vert \nabla u_2\Vert _{L^2} \le \frac{1}{4} \Vert \nabla u\Vert _{L^2}^2 + C\Vert \nabla u_2\Vert _{L^2}^2 \Vert u\Vert _{L^2}^2. \end{aligned}$$
(199)

Now we write

$$\begin{aligned} \int _{{{\mathbb {R}}}^2} (u_1 \cdot \nabla q) \Lambda ^{-1}q dx = \int _{{{\mathbb {R}}}^2} \left( \Lambda ^{-\frac{1}{2}}(u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q \right) \Lambda ^{-\frac{1}{2}}q dx \end{aligned}$$
(200)

via integration by parts, and we show below that

$$\begin{aligned} \left| \int _{{{\mathbb {R}}}^2} \left( \Lambda ^{-\frac{1}{2}}(u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q \right) \Lambda ^{-\frac{1}{2}}q dx \right| \le C\Vert u_1\Vert _{H^2} \Vert q\Vert _{L^2}\Vert \Lambda ^{-\frac{1}{2}}q\Vert _{L^2}. \end{aligned}$$
(201)

Putting (197)-(201) together, we obtain the energy inequality

$$\begin{aligned} \frac{d}{dt} \left[ \Vert \Lambda ^{-\frac{1}{2}}q\Vert _{L^2}^2 + \Vert u\Vert _{L^2}^2 \right] \le C\left[ \Vert u_1\Vert _{H^2}^2 + \Vert \nabla u_2\Vert _{L^2}^2 + \Vert q_1\Vert _{L^4}^4 \right] \left[ \Vert \Lambda ^{-\frac{1}{2}}q\Vert _{L^2}^2 + \Vert u\Vert _{L^2}^2 \right] \nonumber \\ \end{aligned}$$
(202)

from which we obtain uniqueness. Finally, we show that the estimate (201) holds by establishing the commutator estimate

$$\begin{aligned} \Vert \Lambda ^{-\frac{1}{2}}(u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q \Vert _{L^2} \le C\Vert u_1\Vert _{H^2} \Vert q\Vert _{L^2}. \end{aligned}$$
(203)

Indeed, let \(w\in L^2({{\mathbb {R}}}^2)\). By Parseval’s identity, we have

$$\begin{aligned}{} & {} \int _{{{\mathbb {R}}}^2} (\Lambda ^{-\frac{1}{2}} (u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q)(x) w (x) dx \nonumber \\{} & {} \quad = \int _{{{\mathbb {R}}}^2} {\mathcal {F}}(\Lambda ^{-\frac{1}{2}} (u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q)(\xi ) {\mathcal {F}}w (\xi ) d\xi . \end{aligned}$$
(204)

But

$$\begin{aligned} {\mathcal {F}} (\Lambda ^{-\frac{1}{2}}(u_1 \cdot \nabla q))(\xi ) = \int _{{{\mathbb {R}}}^2} |\xi |^{-\frac{1}{2}} (\xi \cdot {\mathcal {F}}u_1 (\xi - y)) {\mathcal {F}}q (y) dy \end{aligned}$$
(205)

and

$$\begin{aligned} {\mathcal {F}} (u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q) (\xi ) = \int _{{{\mathbb {R}}}^2} |y|^{-\frac{1}{2}} (\xi \cdot {\mathcal {F}}u_1 (\xi - y)) {\mathcal {F}}q (y) dy. \end{aligned}$$
(206)

Consequently,

$$\begin{aligned}&\left| \int _{{{\mathbb {R}}}^2} (\Lambda ^{-\frac{1}{2}} (u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q)(x) w (x) dx\right| \nonumber \\ {}&\le \int _{{{\mathbb {R}}}^2} \int _{{{\mathbb {R}}}^2} \min \left\{ |\xi |, |y| \right\} \left| |\xi |^{-\frac{1}{2}} - |y|^{-\frac{1}{2}} \right| |{\mathcal {F}} u_1 (\xi - y) | |{\mathcal {F}} q(y)| |{\mathcal {F}} w(\xi ) | dy d\xi \end{aligned}$$
(207)

where we used

$$\begin{aligned} |\xi \cdot {\mathcal {F}}u_1 (\xi - y)| \le \min \left\{ |\xi |, |y| \right\} |{\mathcal {F}} u_1 (\xi - y)| \end{aligned}$$
(208)

which holds due to the fact that the velocity is divergence-free. We note that

$$\begin{aligned} \min \left\{ |\xi |, |y| \right\} \left| |\xi |^{-\frac{1}{2}} - |y|^{-\frac{1}{2}} \right| \le \frac{\min \left\{ |\xi |, |y| \right\} }{|\xi |^{\frac{1}{2}}|y|^{\frac{1}{2}}} |\xi - y|^{\frac{1}{2}} \le |\xi - y|^{\frac{1}{2}} \end{aligned}$$
(209)

for all \(\xi , y \in {{\mathbb {R}}}^2\). Therefore,

$$\begin{aligned} \left| \int _{{{\mathbb {R}}}^2} (\Lambda ^{-\frac{1}{2}} (u_1 \cdot \nabla q) - u_1 \cdot \nabla \Lambda ^{-\frac{1}{2}}q)(x) w (x) dx\right|&\le \Vert |.|^{\frac{1}{2}} {\mathcal {F}} u_1(.) \Vert _{L^1} \Vert q\Vert _{L^2}\Vert w\Vert _{L^2} \nonumber \\ {}&\le C\Vert u_1\Vert _{H^2} \Vert q\Vert _{L^2}\Vert w\Vert _{L^2} \end{aligned}$$
(210)

by Hölder’s inequality and Young’s convolution inequality. This gives (203) completing the proof of Theorem 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdo, E., Ignatova, M. Long time behavior of solutions of an electroconvection model in \({\mathbb {R}}^2\). J. Evol. Equ. 24, 13 (2024). https://doi.org/10.1007/s00028-024-00944-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00944-z

Keywords

Mathematics Subject Classification

Navigation