Skip to main content
Log in

Stability and optimal decay for the 3D magnetohydrodynamic equations with only horizontal dissipation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

This paper develops an effective approach to establishing the optimal decay estimates on solutions of the 3D anisotropic magnetohydrodynamic (MHD) equations with only horizontal dissipation. As our first step, we prove the global existence and stability of solutions to the aforementioned MHD system emanating from any initial data with small \(H^1\)-norm. Due to the lack of dissipation in the vertical direction, the large-time behavior does not follow from the classical approaches. The analysis of the nonlinear terms are much more difficult than in the case of full dissipation. In particular, we need to represent the MHD equations in an integral form, exploit cancellations and other properties such as the incompressibility in order to control terms involving vertical derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. R. Agapito and M. Schonbek, Non-uniform deay for MHD equations with and without magnetic diffusion. Commun. Partial Differential equations 32 (2007), 1791-1812.

    Google Scholar 

  2. H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften, Vol. 343, Springer-Verlag Berlin, 2011.

    Google Scholar 

  3. N. Broadman, H. Lin and J. Wu, Stabilization of a Background Magnetic Field on a 2 Dimensional Magnetohydrodynamic Flow, SIAM J. Math. Anal. 52 (2020), 5001-5035.

    MathSciNet  Google Scholar 

  4. C. Cao, D. Regmi and J. Wu, The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion, J. Differential Equations 254 (2013), 2661–2681.

    ADS  MathSciNet  Google Scholar 

  5. C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math. 226 (2011), 1803-1822.

    MathSciNet  Google Scholar 

  6. C. Cao, J. Wu and B. Yuan, The 2D incompressible magnetohydrodynamics equations with only magnetic diffusion, SIAM J. Math. Anal. 46 (2014), 588–602.

    MathSciNet  Google Scholar 

  7. Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations, Comm. Math. Phys. 275 (2007), 861-872.

    ADS  MathSciNet  Google Scholar 

  8. W. Chen, Z. Zhang and J. Zhou, Global well-posedness for the 3-D MHD equations with partial diffusion in the periodic domain, Sci. China Math. 65 (2022), 309-318..

    MathSciNet  Google Scholar 

  9. Y. Dai, Z. Tang, J. Wu, A class of global large solutions to the magnetohydrodynamic equations with fractional dissipation, Z. Angew. Math. Phys. 70 (2019), 153.

    MathSciNet  Google Scholar 

  10. W. Deng and P. Zhang, Large Time Behavior of Solutions to 3-D MHD System with Initial Data Near Equilibrium, Arch. Ration. Mech. Anal. 230 (2018), 1017-1102.

    MathSciNet  Google Scholar 

  11. B. Dong, Y. Jia, J. Li and J. Wu, Global regularity and time decay for the 2D magnetohydrodynamic equations with fractional dissipation and partial magnetic diffusion, J. Math. Fluid Mech.  20 (2018), 1541–1565.

    ADS  MathSciNet  Google Scholar 

  12. B. Dong, J. Li and J. Wu, Global regularity for the 2D MHD equations with partial hyperresistivity, Intern. Math Research Notices (2019), No. 14, 4261–4280.

  13. L. Du and D. Zhou, Global well-posedness of 2D magnetohydrodynamics flows with partial dissipation and magnetic diffusion, SIAM J. Math. Anal. 47 (2015), 1562-1587.

    MathSciNet  Google Scholar 

  14. W. Feng, F. Hafeez and J. Wu, Influence of a background magnetic field on a 2D magnetohydrodynamic flow, Nonlinearity 34 (2021), 2527-2562.

    ADS  MathSciNet  Google Scholar 

  15. L. He, L. Xu and P. Yu, On global dynamics of three dimensional magnetohydrodynamics: nonlinear stability of Alfvén waves, Ann. PDE 4 (2018), Art.5, 105 pp.

  16. X. Hu and D. Wang, Low Mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal. 41 (2009), 1272-1294.

    MathSciNet  Google Scholar 

  17. X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows, Arch. Ration. Mech. Anal. 197 (2010), 203-238.

    MathSciNet  Google Scholar 

  18. R. Ji and J. Wu, The resistive magnetohydrodynamic equation near an equilibrium, J. Differential Equations 268 (2020), 1854-1871.

    ADS  MathSciNet  Google Scholar 

  19. R. Ji, J. Wu and W. Yang, Stability and optimal decay for the 3D Navier-Stokes equations with horizontal dissipation, J. Differential Equations 290 (2021), 57-77.

    ADS  MathSciNet  Google Scholar 

  20. Q. Jiu, D. Niu, J. Wu, X. Xu and H. Yu, The 2D magnetohydrodynamic equations with magnetic diffusion, Nonlinearity 28 (2015), 3935–3956.

    ADS  MathSciNet  Google Scholar 

  21. Q. Jiu, X. Suo, J. Wu and H. Yu, Unique weak solutions of the non-resistive magnetohydrodynamic equations with fractional dissipation, Comm. Math. Sci. 18 (2020), 987-1022

    MathSciNet  Google Scholar 

  22. Q. Jiu and J. Zhao, A remark on global regularity of 2D generalized magnetohydrodynamic equations, J. Math. Anal. Appl. 412 (2014), 478–484.

    MathSciNet  Google Scholar 

  23. S. Lai, J. Wu and J. Zhang, Stabilizing phenomenon for 2D anisotropic magnetohydrodynamic system near a background magnetic field, SIAM J. Math. Anal. 53 (2021), 6073-6093.

    MathSciNet  Google Scholar 

  24. C. Li, J. Wu and X. Xu, Smoothing and stabilization effects of magnetic field on electrically conducting fluids, J. Differential Equations 276 (2021), 368-403.

    ADS  MathSciNet  Google Scholar 

  25. E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, Vol. 14, 2nd Edition, American Mathematical Society, 2001.

  26. F. Lin, L. Xu, and P. Zhang, Global small solutions to 2-D incompressible MHD system, J. Differential Equations 259 (2015), 5440-5485.

    ADS  MathSciNet  Google Scholar 

  27. H. Lin and L. Du, Regularity criteria for incompressible magnetohydrodynamics equations in three dimensions, Nonlinearity 26 (2013), 219-239.

    ADS  MathSciNet  Google Scholar 

  28. H. Lin, R. Ji, J. Wu and L. Yan, Stability of perturbations near a background magnetic field of the 2D incompressible MHD equations with mixed partial dissipation, J. Funct. Anal. 279 (2020), 108519.

    MathSciNet  Google Scholar 

  29. H. Lin, J. Wu and Y. Zhu, Global solutions to 3D incompressible MHD system with dissipation in only one direction, submitted for publication.

  30. A. Majda, A. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.

    Google Scholar 

  31. J. Pedlosky Geophysical Fluid Dynamics, 2nd Edition, Springer-Verlag, Berlin Heidelberg-New York, 1987.

  32. A. Pippard, Magnetoresistance in Metals, Cambridge University Press, Cambridge, UK, 1989.

    Google Scholar 

  33. E. Priest and T. Forbes, Magnetic Reconnection, MHD Theory and Applications, Cambridge University Press, Cambridge, 2000.

  34. X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Funct. Anal. 267 (2014), 503-541.

    MathSciNet  Google Scholar 

  35. X. Ren, Z. Xiang and Z. Zhang, Global well-posedness for the 2D MHD equations without magnetic diffusion in a strip domain, Nonlinearity 29 (2016), 1257-1291.

    ADS  MathSciNet  Google Scholar 

  36. M. Schonbek, \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal. 88 (1985), 209–222.

    Google Scholar 

  37. M. Schonbek and T. Schonbek, Moments and lower bounds in the far-field of solutions to quasi-geostrophic flows. Discrete Contin. Dyn. Syst. 13 (2005), 1277–1304.

    MathSciNet  Google Scholar 

  38. T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS regional conference series in mathematics, 2006.

  39. Z. Tan and Y. Wang, Global well-posedness of an initial-boundary value problem for viscous non-resistive MHD systems, SIAM J. Math. Anal. 50 (2018), 1432-1470.

    MathSciNet  Google Scholar 

  40. R. Wan, On the uniqueness for the 2D MHD equations without magnetic diffusion, Nonlin. Anal. Real World Appl. 30 (2016), 32-40.

    MathSciNet  Google Scholar 

  41. D. Wei and Z. Zhang, Global well-posedness of the MHD equations in a homogeneous magnetic field, Anal. PDE 10 (2017), 1361–1406.

    MathSciNet  Google Scholar 

  42. D. Wei and Z. Zhang, Wei, Global well-posedness for the 2-D MHD equations with magnetic diffusion, Commun. Math. Res.36 (2020), 377-389.

    MathSciNet  Google Scholar 

  43. J. Wu, Dissipative quasi-geostrophic equations with \(L^p\) data, Electron J. Differential Equations 2001 (2001), 1-13.

    Google Scholar 

  44. J. Wu, The 2D magnetohydrodynamic equations with partial or fractional dissipation, Lectures on the analysis of nonlinear partial differential equations, Morningside Lectures on Mathematics, Part 5, MLM5, pp. 283-332, International Press, Somerville, MA, 2018.

  45. J. Wu, Y. Wu and X. Xu, Global small solution to the 2D MHD system with a velocity damping term, SIAM J. Math. Anal. 47 (2015), 2630-2656.

    MathSciNet  Google Scholar 

  46. J. Wu and Y. Zhu, Global solutions of 3D incompressible MHD system with mixed partial dissipation and magnetic diffusion near an equilibrium, Adv. Math. 377 (2021), 107466.

    ADS  MathSciNet  Google Scholar 

  47. L Xu and P Zhang, Enhanced dissipation for the third component of 3D anisotropic Navier–Stokes equations, arXiv:2107.06453,

  48. K. Yamazaki, On the global well-posedness of N-dimensional generalized MHD system in anisotropic spaces, Adv. Differential Equations 19 (2014), 201-224.

    MathSciNet  Google Scholar 

  49. K. Yamazaki, Remarks on the global regularity of the two-dimensional magnetohydrodynamics system with zero dissipation, Nonlinear Anal. 94 (2014), 194-205.

    MathSciNet  Google Scholar 

  50. K. Yamazaki, On the global regularity of two-dimensional generalized magnetohydrodynamics system, J. Math. Anal. Appl. 416 (2014), 99-111.

    MathSciNet  Google Scholar 

  51. K. Yamazaki, Global regularity of logarithmically supercritical MHD system with zero diffusivity, Appl. Math. Lett. 29 (2014), 46-51.

    MathSciNet  Google Scholar 

  52. W. Yang, Q. Jiu and J. Wu, The 3D incompressible magnetohydrodynamic equations with fractional partial dissipation, J. Differential Equations 266 (2019), 630-652.

    ADS  MathSciNet  Google Scholar 

  53. W. Yang, Q. Jiu, J. Wu, The 3D incompressible Navier-Stokes equations with partial hyperdissipation, Math. Nach. 292 (2019), 1823–1836.

    MathSciNet  Google Scholar 

  54. Z. Ye, Remark on the global regularity of 2D MHD equations with almost Laplacian magnetic diffusion, J. Evol. Equations 18 (2018), No.2, 821-844.

    MathSciNet  Google Scholar 

  55. B. Yuan and J. Zhao, Global regularity of 2D almost resistive MHD equations, Nonlin. Anal. Real World Appl. 41 (2018), 53-65.

    MathSciNet  Google Scholar 

  56. T. Zhang, An elementary proof of the global existence and uniqueness theorem to 2-D incompressible non-resistive MHD system, (2014), arXiv:1404.5681.

  57. T. Zhang, Global solutions to the 2D viscous, non-resistive MHD system with large background magnetic field, J. Differential Equations 260 (2016), 5450-5480.

    ADS  MathSciNet  Google Scholar 

  58. Y. Zhou and Y. Zhu, Global classical solutions of 2D MHD system with only magnetic diffusion on periodic domain, J. Math. Phys.  59 (2018), 081505.

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Shang was partially supported by Natural Science Foundation of Hebei Province under grant No. A2023501008 and National Natural Science Foundation of China under grant No. 12371232. Wu was partially supported by NSF grant DMS 2104682 and the AT &T Foundation at Oklahoma State University. Zhang was partially supported by the National Natural Science Foundation of China [grant number 12326416] and the Innovation Capacity Enhancement Program-Science and Technology Platform Project, Hebei Province (22567623H).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, H., Wu, J. & Zhang, Q. Stability and optimal decay for the 3D magnetohydrodynamic equations with only horizontal dissipation. J. Evol. Equ. 24, 12 (2024). https://doi.org/10.1007/s00028-023-00940-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00940-9

Keywords

Mathematics Subject Classification

Navigation