Skip to main content
Log in

Pointwise space-time estimates of two-phase fluid model in dimension three

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We studied the pointwise space-time behavior of the classical solution to the Cauchy problem of two-phase fluid model derived by Choi (SIAM J Math Anal 48:3090–3122, 2016) when the initial data is sufficiently small and regular. This model is the compressible damped Euler system coupled with the compressible Naiver–Stokes system via a drag force. As we know, Liu and Wang (Commun Math Phys 196:145–173, 1998) verified that the solution of the compressible Naiver–Stokes system obeys the generalized Huygens’ principle, while Wang and Yang (J Differ Equ 173:410–450, 2001) verified the solution of the compressible Euler system does not obey the generalized Huygens’ principle due to the damped mechanism. In this paper, we proved that both of two densities and two momentums for the two-phase fluid model obey the generalized Huygens’ principle as that in Liu and Wang (Commun Math Phys 196:145–173, 1998). The main contribution is to overcome the difficulty of the non-conservation arising from the damped mechanism of the system. As a byproduct, we also extended \(L^2\)-estimate in Wu et al. (SIAM J Math Anal 52(6):5748–5774, 2020) to \(L^p\)-estimate with \(p>1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Baranger, L. Desvillettes, Coupling Euler and Vlasov equations in the context of sprays: The local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3(2006), 1-26.

    Article  MathSciNet  Google Scholar 

  2. S. Berres, R. Bürger, K. Karlsen, E. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedi-mentation with compression, SIAM Appl. Math., 64(2003), 41-80.

    Article  MathSciNet  Google Scholar 

  3. J.A. Carrillo, Y.P. Choi, T.K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33(2016), 273-307.

    Article  ADS  MathSciNet  Google Scholar 

  4. Q. Chen, Z. Tan, Time decay of solutions to the compressible Euler equations with damping, Kinet. Relat. Models, 7(2014), 605-619.

    Article  MathSciNet  Google Scholar 

  5. Y.P. Choi, Global classical solutions and large-time behavior of the two-phase fluid model, SIAM J. Math. Anal., 48(2016), 3090-3122.

    Article  MathSciNet  Google Scholar 

  6. Y.P. Choi, Global classical solutions of the Vlasov–Fokker–Planck equation with local alignment forces, Nonlinearity, 29(2016), 1887-1916.

    Article  ADS  MathSciNet  Google Scholar 

  7. Y.P. Choi, B. Kwon, The Cauchy problem for the pressureless/isentropic Navier–Stokes equations, J. Diff. Eqns., 261(2016), 654-711.

    Article  ADS  MathSciNet  Google Scholar 

  8. S.J. Deng, S.H. Yu, Green’s function and pointwise convergence for compressible Navier–Stokes equations, Quarterly of Applied Mathematics, 75(3)(2017), 433-503.

    Article  MathSciNet  Google Scholar 

  9. S.J. Deng, W.K. Wang, Half space problem for Euler equations with damping in 3-D, J. Diff. Eqns., 263(11)(2017), 7372-7411.

    Article  ADS  MathSciNet  Google Scholar 

  10. L.L. Du, Z.G. Wu, Solving the non-isentropic Navier–Stokes equations in odd space dimensions: The Green function method, J. Math. Phys., 58(10)(2017), 101506.

  11. R.J. Duan, S.Q. Liu, Cauchy problem on the Vlasov–Fokker–Planck equation coupled with the compressible Euler equations through the friction force, Kinet. Relat. Models, 6(2013), 687-700.

    Article  MathSciNet  Google Scholar 

  12. R.J. Duan, S. Ukai, T. Yang, H.J. Zhao, Optimal convergence rates for the compressible Navier–Stokes equations with potential forces, Math. Models Methods Appl. Sci., 17(2007), 737-758.

    Article  MathSciNet  Google Scholar 

  13. R.J. Duan, H.X. Liu, S. Ukai, T. Yang, Optimal \(L^p-L^q\) convergence rates for the compressible Navier–Stokes equations with potential force, J. Diff. Eqns., 238(2007), 220-233.

    Article  ADS  Google Scholar 

  14. D. Hoff, K. Zumbrun, Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow, Indiana Univ. Math. J., 44(2)(1995), 603-676.

    Article  MathSciNet  Google Scholar 

  15. D. Hoff, K. Zumbrun, Pointwise decay estimates for multidimensional Navier–Stokes diffusion Waves, Z. angew. Math. Phys., 48(1997), 597-614.

    Article  MathSciNet  Google Scholar 

  16. Y. Guo, Y.J. Wang, Decay of dissipative equations and negative Sobolev spaces, Comm. Partial Differential Equations, 37(2012), 2165-2208.

    Article  MathSciNet  Google Scholar 

  17. T. Karper, A. Mellet, K. Trivisa, Existence of weak solutions to kinetic flocking models, SIAM J. Math. Anal., 45(2013), 215-243.

    Article  MathSciNet  Google Scholar 

  18. D.L. Li, The Green’s function of the Navier–Stokes equations for gas dynamics in \({\mathbb{R}}^3\), Comm. Math. Phys., 257(2005), 579-619.

    Article  ADS  MathSciNet  Google Scholar 

  19. H.L. Li, T. Zhang, Large time behavior of isentropic compressible Navier–Stokes system in R3, Math. Methods Appl. Sci., 34(6)(2011), 670-682.

    Article  ADS  MathSciNet  Google Scholar 

  20. M.Q. Liu, Z.G. Wu, Space-time behavior of the compressible Navier–Stokes equations with hyperbolic heat conduction, J. Math. Phys., 64(2023), 103101.

    Article  ADS  MathSciNet  Google Scholar 

  21. T.P. Liu, S.E. Noh, Wave propagation for the compressible Navier–Stokes equations, J. Hyperbolic Differ. Eqns., 12(2015), 385-445.

    Article  MathSciNet  Google Scholar 

  22. T.P. Liu, W.K. Wang, The pointwise estimates of diffusion wave for the Navier–Stokes systems in odd multi-dimension, Comm. Math. Phys., 196(1998), 145-173.

    Article  ADS  MathSciNet  Google Scholar 

  23. T.P. Liu, Y.N. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws, Amer. Math. Soc., 125(1997).

  24. A. Matsumura, T. Nishida, The initial value problem for the equation of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337-342.

    Article  MathSciNet  Google Scholar 

  25. A. Matsumura, T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20(1980), 67-104.

    MathSciNet  Google Scholar 

  26. A. Mellet, A. Vasseur, Global weak solutions for a Vlasov–Fokker–Planck/Navier–Stokes system of equations, Math. Models Methods Appl. Sci., 17(2007), 1039-1063.

    Article  MathSciNet  Google Scholar 

  27. G. Ponce, Global existence of small solution to a class of nonlinear evolution equations, Nonlinear Anal., 9(1985), 339-418.

    Article  MathSciNet  Google Scholar 

  28. W.K. Sartory, Three-component analysis of blood sedimentation by the method of characteristics, Math. Biosci., 33(1977), 145-165.

    Article  Google Scholar 

  29. T.C. Sideris, B. Thomases, D.H. Wang, Long time behavior of solutions to the 3D compressible Euler equations with damping, Comm. Partial Differential Equations, 28(2003), 795-816.

    Article  MathSciNet  Google Scholar 

  30. Z. Tan, G.C. Wu, Large time behavior of solutions for compressible Euler equations with damping in R3, J. Diff. Eqns., 252(2012), 1546-1561.

    Article  ADS  Google Scholar 

  31. H.Z. Tang, Y. Zhang, Large time behavior of solutions to a two phase fluid model in R3, J. Math. Anal. Appl., 503(2)(2021), 125296.

  32. E.M. Tory, K.H. Karlsen, R. Bürger, S. Berres, Strongly degenerate parabolic– hyperbolic systems modeling polydisperse sedimentation with compression, SIAM. J. Appl. Math., 64(2003), 41-80.

    Article  MathSciNet  Google Scholar 

  33. W.K. Wang, Z.G. Wu, Pointwise estimates of solution for the Navier–Stokes–Poisson equations in multi-dimensions, J. Diff. Eqns., 248(2010), 1617-1636.

    Article  ADS  MathSciNet  Google Scholar 

  34. W.K. Wang, T. Yang, The pointwise estimates of solutions for Euler equations with damping in multi-dimensions, J. Diff. Eqns., 173(2001), 410-450.

    Article  ADS  MathSciNet  Google Scholar 

  35. F.A. Williams, Spray combustion and atomization, Phys. Fluids, 1(1958), 541–555.

    Article  ADS  Google Scholar 

  36. G.C. Wu, Y.H. Zhang, L. Zou, Optimal large-time behavior of the two-phase fluid model in the whole space, SIAM J. Math. Anal. 52(6)(2020), 5748-5774.

    Article  MathSciNet  Google Scholar 

  37. Z.G. Wu, W.K. Wang, Pointwise estimates for bipolar compressible Navier–Stokes–Poisson system in dimension three, Arch. Rational Mech. Anal., 226(2)(2017), 587-638.

    Article  ADS  MathSciNet  Google Scholar 

  38. Z.G. Wu, W.K. Wang, The pointwise estimates of diffusion wave of the compressible micropolar fluids, J. Diff. Eqns., 265(6)(2018), 2544-2576.

    Article  ADS  MathSciNet  Google Scholar 

  39. Z.G. Wu, W.K. Wang, Generalized Huygens’ principle for bipolar non-isentropic compressible Navier–Stokes–Poisson system in dimension three, J. Diff. Eqns., 269(10)(2020), 7906-7930.

    Article  ADS  MathSciNet  Google Scholar 

  40. Y.N. Zeng, \(L^1\) asymptotic behavior of compressible isentropic viscous 1-D flow, Comm. Pure Appl. Math., 47(1994), 1053-1082.

    Article  MathSciNet  Google Scholar 

Download references

Funding

The research was supported by National Natural Science Foundation of China (No. 11971100) and Natural Science Foundation of Shanghai (Grant No. 22ZR1402300)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhou, W. Pointwise space-time estimates of two-phase fluid model in dimension three. J. Evol. Equ. 24, 11 (2024). https://doi.org/10.1007/s00028-024-00943-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-024-00943-0

Keywords

Mathematics Subject Classification

Navigation