Skip to main content
Log in

Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of a weak solution and blow-up of strong solutions to a two-component Fornberg–Whitham system. Due to the absence of some useful conservation laws, we establish the existence of a weak solution to the system in lower order Sobolev spaces \(H^{s}\times H^{s-1}\) (\(s\in (1,3/2]\)) via a modified pseudo-parabolic regularization method. And then, a blow-up scenario for strong solutions to this system is shown. By the analysis of Riccati-type inequalities recently, we present some sufficient conditions on the initial data that lead to the blow-up for corresponding strong solutions to the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. J.L. Bona, R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond. Ser. A 278 (1975), 555–601.

    Article  ADS  MathSciNet  Google Scholar 

  2. Y. Chen, H. Gao, Y. Liu, On the Cauchy problem for the two-component Dullin–Gottwald–Holm system, Discrete Contin. Dyn. Syst. 33 (2013), 3407–3441.

    Article  MathSciNet  Google Scholar 

  3. A. Constantin, J. Escher, wave breaking for nonlinear nonlocal shallow water equations, Acta. Math. 181 (1998), 229–243.

    Article  MathSciNet  Google Scholar 

  4. A. Constantin, R.I. Ivanov, On an integrable two-component Camassa–Holm shallow water system, Phys. Lett. A 372 (2008), 7129–7132.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  5. M. Ehrnström, J. Escher, L. Pei, A note on the local well-posedness for the Whitham equation. In: J. Escher, E. Schrohe, J. Seiler, C. Walker (eds), Elliptic and Parabolic Equations. Springer Proceedings in Mathematics & Statistics, vol 119, 63–75. Springer, 2015.

  6. J. Escher, Breaking water waves. In: A. Constantin (eds), Nonlinear Water Waves. Lecture Notes in Mathematics, vol 2158. Springer, 2016.

  7. X. Fan, S. Yang, J. Yin, L. Tian, Bifurcations of traveling wave solution for a two-component Fornberg–Whitham equation, Commun. Nonlinear. Sci. Numer. Simul. 16 (2011), 3956–3963.

    Article  ADS  MathSciNet  Google Scholar 

  8. G. Fornberg, G.B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. Ser. A 289 (1978), 373–404.

    Article  ADS  MathSciNet  Google Scholar 

  9. S. Haziot, wave breaking for the Fornberg–Whitham equation, J. Differ. Equ.263 (2017), 8178–8185.

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Holmes, R.C. Thompson, Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces, J. Differ. Equ. 263 (2017), 4355–4381.

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Hörmann, Wave breaking of periodic solutions to the Fornberg–Whitham equation, Discrete Contin. Dyn. Syst. 38 (3) (2018), 1605–1613.

    Article  MathSciNet  Google Scholar 

  12. T. Kato, G. Ponce, Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math. 41 (1988), 891–907.

    Article  MathSciNet  Google Scholar 

  13. J.L. Lions, Quelques Méthodes dé Résolution des Problémes aux Limites Non linéaires. Dunod, Gauthier-Villars, Paris, 1969.

    Google Scholar 

  14. S. Lai, Y. Wu, Existence of weak solutions in lower order Sobolev space for a Camassa–Holm-type equation, J. Phys. A: Math. Theor. 43 (2010), 095205(1-13).

    Article  ADS  MathSciNet  Google Scholar 

  15. Y.A. Li, P.J. Olver, Well-posedness and blow-up solutions for an Integrable nonlinearly dispersive model wave equation, J. Differ. Equ. 162 (2000), 27–63.

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Ma, Y. Liu, C. Qu, Wave-breaking phenomena for the nonlocal Whitham-type equations, J. Differ. Equ. 261 (2016), 6029–6054.

    Article  ADS  MathSciNet  Google Scholar 

  17. A.J. Majda, A.L. Bertozzi, Vorticity and incompressible flow. Cambridge UP, Cambridge, 2002.

    Google Scholar 

  18. L. Wei, Wave breaking analysis for the Fornberg–Whitham equation, J. Differ. Equ. 265 (2018), 2886–2896.

    Article  ADS  MathSciNet  Google Scholar 

  19. L. Wei, New wave-breaking criteria for the Fornberg–Whitham equation, J. Differ. Equ. 280 (2021), 571–589.

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Wei, The Cauchy problem for a modified Euler–Poisson system in one dimension, Quart. Appl. Math.79 (2021), 667–693.

    Article  MathSciNet  Google Scholar 

  21. G.B. Whitham, Variational methods and applications to water waves, Proc. R. Soc. A299 (1967), 6–25.

    ADS  Google Scholar 

  22. F. Xu, Y. Zhang, F. Li, The well-posedness, blow-up and traveling waves for a two-component Fornberg–Whitham system, J. Math. Phys. 62 (2021), 041505.

    Article  ADS  MathSciNet  Google Scholar 

  23. F. Xu, Y. Zhang, F. Li, Continuity properties of the data-to-solution map and ill-posedness for a two-component Fornberg–Whitham system, arXiv:2107.01357.

  24. J. Zhou, L. Tian, A type of bounded traveling wave solutions for the Fornberg–Whitham equation, J. Math. Anal. Appl. 346 (2008), 255–261.

    Article  MathSciNet  Google Scholar 

  25. J. Zhou, L. Tian, Solitions, peakons and periodic cusp wave solutions for the Fornberg–Whitham equation, Nonlinear Anal. RWA11 (2010), 356–363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers for their thoughtful comments and their help in improving this article. This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY21A010008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Wang, Y. & Wei, L. Existence of a weak solution and blow-up of strong solutions for a two-component Fornberg–Whitham system. J. Evol. Equ. 24, 10 (2024). https://doi.org/10.1007/s00028-023-00941-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-023-00941-8

Keywords

Mathematics Subject Classification

Navigation