Skip to main content
Log in

Investigation on Gut Microbiota Diversity of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) Larvae

  • MICROBIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The red palm weevil (RPW) Rhynchophorus ferrugineus (Coleoptera: Curculionidae) is a species of beetle that depends on palm trees to complete its life cycle. RPW larvae feed on palm trunks and can cause tree death, with significant impacts on both wild and cultivated palms. The larvae burrow into the trunk of the palm and feed on the delicate tissue and sap of the palm, killing the host tree. Herbivore insect gut microbiota play important roles in host physiological characteristics such as nutritional needs, immunity, growth and developmental mechanisms, and mating behavior. The aim of this study was to determine the gut microbiota diversity of RPW larvae sampled in Sistan and Baluchistan province, Iran. Analysis of 16S rRNA amplified directly from the intestine showed the presence of Serratia sp., Klebsiella sp., and Shigella sp. from the Enterobacteriaceae family, Bacillus sp. from the Bacillacea family, Enterococcus sp. from the Enterococcaceae family, and Kocuria sp. from the Micrococcaceae family. The results of their cultivation on a modified CMCAgar medium showed that Kocuria, Serratia, Bacillus, Shigella genera have the ability to degrade cellulose. Identifying the bacterial flora and determining their role can be essential to controlling and reducing the population of this pest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ankrah, N.Y.D. and Douglas, A.E., Nutrient factories: metabolic function of beneficial microorganisms associated with insects, Environ. Microbiol., 2018, vol. 20, pp. 2002–2011.

    Article  PubMed  Google Scholar 

  2. Anand, A.A.P., Vennison, S.J., Sankar, S.G., Prabhu, D.I.G., Vasan, P.T., Raghuraman, T., et al., Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion, J. Insect Sci., 2010, vol. 10, p. 107.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Avand Faghih, A., The biology of red palm weevil, Rhynchophorus ferrugineus Oliv. (Coleoptera: Curculionidae) in Saravan (Sistan and Balouchistan Province, Iran), Appl. Entomol. Phytopathol., 1998, vol. 63, pp. 16–18.

    Google Scholar 

  4. Basim, Y., Mohebali, G., Jorfi, S., Nabizadeh, R., Ghadiri, A., Ahmadi Moghadam, et al., Comparison of performance and efficiency of four methods to extract genomic DNA from oil contaminated soils in southwestern of Iran, J. Environ. Health Sci. Eng., 2020, vol. 18, pp. 463–468.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ben-Yosef, M., Jurkevitch, E., and Yuval, B., Effect of bacteria on nutritional status and reproductive success of the Mediterranean fruit fly Ceratitis capitate, Physiol. Entomol., 2008, vol. 33, pp. 145–154.

    Article  Google Scholar 

  6. Ben-Yosef, M., Pasternak, Z., Jurkevitch, E., and Yuval, B., Symbiotic bacteria enable olive flies (Bactrocera oleae) to exploit intractable sources of nitrogen, J. Evol. Biol., 2014, vol. 27, pp. 2695–2705.

    Article  CAS  PubMed  Google Scholar 

  7. Behar, A., Yuval, B., and Jurkevitch, E., Enterobacteria-meidated nitrogen fixation in natural populations of the fruit fly Ceratitis capitate, Mol. Ecol., 2005, vol. 14, pp. 2637–2643.

    Article  CAS  PubMed  Google Scholar 

  8. Briones-Roblero, C.I., Rodriguez-Diaz, R., Santiago-Cruz, J.A., Zuniga, G., and Rivera-Orduna, F., Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae), Folia Microbiol., 2017, vol. 62, pp. 1–9.

    Article  CAS  Google Scholar 

  9. Butera, G., Ferraro, C., Colazza, S., Alonzo, G., and Quatrini, P., The cultural bacterial community of frass produced by larvae of Rhynchophorus ferrugineus olivier Curculionidae) in the Canary island date palm, Lett. Appl. Microbiol., 2012, vol. 54, pp. 530–536.

    Article  CAS  PubMed  Google Scholar 

  10. Brownlie, J.C. and Johnson, K.N., Symbiont-mediated protection in insect hosts, Trends Microbiol., 2009, vol. 17, pp. 348–354.

    Article  CAS  PubMed  Google Scholar 

  11. Campbell, B.C., Bragg, T.S., and Turner, C.E., Phylogeny of symbiotic bacteria of four weevil species (Coleoptera: Curculionidae) based on analysis of 16S ribosomal DNA, Insect Biochem., 1992, vol. 22, no. 5, pp. 415–421.

    Article  CAS  Google Scholar 

  12. Chen, B., Du, K., Sun, C., Vimalanathan, A., Liang, X., Li, Y., et al., Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives, ISME J., 2018, vol. 12, pp. 2252–2262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, B., The, B.S., Sun, C., Hu, S., Lu, X., Boland, W., et al., Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis, Sci. Rep., 2016, vol. 6, p. 29505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Douglas, A.E., Multiorganismal insects: diversity and function of resident microorganisms, Annu. Rev. Entomol., 2015, vol. 60, pp. 17–34.

    Article  CAS  PubMed  Google Scholar 

  15. Edgar, R.C., UPARSE: highly accurate OTU sequences from microbial amplicon reads, Nat. Methods, 2013, vol. 10, pp. 996–998.

    Article  CAS  PubMed  Google Scholar 

  16. Ehteshami, S., Zahedi, S.M., Daneshvar Hakimi Meybodi, N., and Khazaei, M., An introduction to Iran palms: types, usage and production problems, Azarian J. Agric., 2017, vol. 4, no. 2, pp. 46–53.

    Google Scholar 

  17. El-Shafie, H.A.F. and Faleiro, J.R., Red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae): global invasion, current management options, challenges and future prospects, in Invasive Species—Introduction Pathways, Economic Impact, and Possible Management Options, El-Shafie, H.A.F., Ed., Intechopen, 2020. https://doi.org/10.5772/intechopen.93391

    Book  Google Scholar 

  18. Engel, P. and Moran, N.A., The gut microbiota of insects–diversity in structure and function, FEMS Microbiol. Rev., 2013, vol. 37, pp. 699–735.

    Article  CAS  PubMed  Google Scholar 

  19. Gandotra, S., Bhuyan, P.M., Gogoi, D.K., Kumar, A., and Subramanian, S., Screening of nutritionally important gut bacteria from the lepidopteran insects through qualitative enzyme assays, Proc. Natl. Acad. Sci. India B., 2018, vol. 88, pp. 329–337.

    CAS  Google Scholar 

  20. Giblin-Davis, R.M., Faleiro, J.R., Jacas, J.A., Peٌa, J.E., and Vidyasagar, P.S.P.V., Biology and management of the Red Palm Weevil, Rhynchophorus ferrugineus, in Potential Invasive Pests of Agricultural Crops, Peٌa, J.E., Ed., University of Florida, USA: CAB International, 2013, pp. 1–34.

  21. Gohel, H.R., Contractor, C.N., Ghosh, S.K., and Braganza, V.J.A., Comparative study of various staining techniques for determination of extra cellular cellulase activity on Carboxy Methyl Cellulose (CMC) agar plates, Int. J. Curr. Microbiol. Appl. Sci., 2014, vol. 3, pp. 261–266.

    Google Scholar 

  22. Habineza, P., Muhammad, A., Ji, T., Xiao, R., Yin, X., Hou, Y., et al., The promoting effect of gut microbiota on growth and development of red palm weevil, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Dryophthoridae) by modulating its nutritional metabolism, Front. Microbiol., 2019, vol. 10. https://doi.org/10.3389/fmicb.2019.01212:1212

  23. Hugh, R. and Leifson, E., The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative rods. J. Bacterioli., 1953, vol. 66, pp. 24–26.

    Article  CAS  Google Scholar 

  24. Jia, S., Zhang, X., Zhang, G., Yin, A., Zhang, S., Li, F., et al., Seasonally variable intestinal metagenomes of the red palm weevil (Rhynchophorus ferrugineus), Environ. Microbiol., 2013, vol. 15, pp. 3020–3029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jing, T.Z., Qi, F.H., and Wang, Z.Y., Most dominant roles of insect gut bacteria: digestion, detoxification, or essential nutrient provision?, Microbiome, 2020, vol. 8, p. 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ju, R.T., Wang, F., Wan, F.H., and Li, B., Effect of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae), J. Pest Sci., 2011, vol. 84, pp. 33–39.

    Article  Google Scholar 

  27. Kaltenpoth, M. and Florez, L.V., Versatile and dynamic symbioses between insects and burkholderia bacteria, Annu. Rev. Entomol., 2020, vol. 65, pp. 145–170.

    Article  CAS  PubMed  Google Scholar 

  28. Kassim, A.S.M., Ishak, N., Aripin, A.M., and Zaidel, D.N., Potential lignin degraders isolated from the gut of Rhynchophorus ferrugineus, Int. J. Sustain. Constr. Eng. Tech., 2016, vol. 2, no. 1, pp. 72–82.

    Google Scholar 

  29. Khiyami, M. and Alyamani, E., Aerobic and facultative anaerobic bacteria from gut of red palm weevil Rhynchophorus ferrugineus, Afr. J. Biotechnol., 2008, vol. 7, pp. 1432–1437.

    Google Scholar 

  30. Latifi, Z. and Shabanali Fami, H., Investigating the technical efficiency of date palm cultivation using the data envelopment analysis, Int. J. Agric. Manage. Dev., 2020, vol. 10, no. 4, pp. 383–399.

    Google Scholar 

  31. Lu, M., Hulcr, J., and Sun, J.H., The role of symbiotic microbes in insect invasions, Annu. Rev. Entomol., 2016, vol. 47, pp. 487–505.

    Google Scholar 

  32. Manee, M.M., Alqahtani, F.H., Al-Shomrani, B.M., El-Shafie, H.A.F., and Dias, G.B., Omics in the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae): a bridge to the pest, Insects, 2023, vol. 14, p. 255.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mannesmann, R., Xylanase from intestine of the Samia cynthia pryeri, Int. Biodeterior. Biodegrad., 1972, vol. 8, pp. 104–111.

    Google Scholar 

  34. Mazza, G., Francardi, V., Simoni, S., Benvenuti, C., Cervo, R., Faleiro, J.R., et al., An overview on the natural enemies of Rhynchophorus palm weevils, with focus on R. ferrugineus, Biol. Control., 2014, vol. 77, pp. 83–92.

    Article  Google Scholar 

  35. Mohammed, M.E., El-Shafie, H.A., and Alhajhoj, M.R., Recent trends in the early detection of the invasive red palm weevil, Rhynchophorus ferrugineus (olivier), in Invasive Species-Introduction Pathways, Economic Impact, and Possible Management Options, El-Shafie, H.A.F., Ed., Intechopen, 2020. https://doi.org/10.5772/intechopen.93393

    Book  Google Scholar 

  36. Morales-Jiménez, L., Vera-Ponce de Len, A., Garca-Domnguez, A., Martnex-Romero, E., Ziga, G., and Hernndez-Rodrguez, C., Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae), Microbiol. Ecol., 2013, vol. 66, pp. 200–210.

    Article  Google Scholar 

  37. Mc Cutcheon, J.P. and Moran, N.A., Extreme genome reduction in symbiotic bacteria, Nat. Rev. Microbiol., 2011, vol. 10, pp. 13–26.

    Article  PubMed  Google Scholar 

  38. Muhammad, A., Fang, Y., Hou, Y., and Shi, Z., The gut entomotype of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism, Front. Microbiol., 2017, vol. 8, p. 2291. https://doi.org/10.3389/fmicb.2017.02291

    Article  PubMed  PubMed Central  Google Scholar 

  39. Muhammad, A., Habineza, P., Ji, T., Hou, Y., and Shi, Z., Intestinal microbiota confer protection by priming the immune system of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Front. Physiol., 2019, vol. 10, p. 1303. https://doi.org/10.3389/fphys.2019.01303

    Article  PubMed  PubMed Central  Google Scholar 

  40. Nadiah, W.M.W.N., Zainal-Abidin, B.A., Mahadi, N.M., and Md-Nor, S., Diversity of bacteria in the alimentary tract of Rhynchophorus Ferrugineus (Olivier) larvae, J. Insect Sci., 2018, vol. 53, no. 1, pp. 45–53.

    Google Scholar 

  41. Peng, L., Miao, Y.X., and Hou, Y.M., Demographic comparison and population projection of Rhynchophorus ferrugineus (Coleoptera: Curculionidae) reared on sugarcane at different temperatures, Sci. Rep., 2016, vol. 6, p. 31659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peri, E., Rochat, D., Belušič, G., Ilić, M., Soroker, V., Barkan, S., et al., Rhynchophorus ferrugineus: behavior, ecology, and communication, in Handbook of Major Palm Pests: Biology and Management, Soroker, V., Colazza, S., Alchanatis, Vi., and Audsley, N., Eds., Wiley, 2016.

    Google Scholar 

  43. Potrikus, C.J. and Breznak, J.A., Gut bacteria recycle uric acid nitrogen in termites: A strategy for nutrient conservation, Proc. Natl. Acad. Sci. U. S. A., 1981, vol. 78, no. 7, pp. 4601–4605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pu, Y.C., Ma, T.L., Hou, Y.M., and Sun, M., An entomopathogenic bacterium strain, Bacillus thuringiensis, as a biological control agent against the red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae), Pest Manage. Sci., 2017, vol. 73, pp. 1494–1502.

    Article  CAS  Google Scholar 

  45. Quinn, P.J., Carter, M.E., Markey, B., and Carter, G.R., Clinical, Veterinary, Microbiology, Spain: Wolf Press, 1994.

    Google Scholar 

  46. Raio, A., Francardi, V., and Roversi, P., Bacteria associated to Rhynchophorus ferrugineus (Olivier) (Coleoptera), J. Zool., 2016, vol. 99, pp. 53–57.

    Google Scholar 

  47. Salama, H.S., Foda, M.S., El-Bendary, M.A., and Abdel-Razek, A., Infection of red palm weevil, Rhynchophorus ferrugineus, by spore-forming bacilli indigenous to its natural habitat, Egypt. J. Pestic. Sci., 2004, vol. 77, pp. 27–31.

    Google Scholar 

  48. Scrascia, M., Pazzani, C., Valentini, F., Oliva, M., Russo, V., D’Addabbo, P., et al., Identification of pigmented Serratia marcescens symbiotically associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), MicrobiologyOpen, 2016, vol. 5, no. 5, pp. 883–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Seipke, R.F., Kaltenpoth, M., and Hutchings, M.I., Streptomyces as symbionts: an emerging and widespread theme?, FEMS Microbiol. Rev., 2012, vol. 36, pp. 862–876.

    Article  CAS  PubMed  Google Scholar 

  50. Shin, S.C., Kim, S.H., You, H., Kim, A.C., Lee, K.A.M., Yoon, J.H., et al., Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling, Science, 2011, vol. 334, pp. 670–674.

    Article  CAS  PubMed  Google Scholar 

  51. Sharon, G., Segal, D., Fingo, J.M., Hefetz, A., Zilber-Rosenberg, I., and Rosenberg, E., Commensal bacteria play a role in mating preference of Drosophila melanogaster, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 20051–20056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Siddiqui, J.A., Khan, M.M., Bamisile, B.S., Hafeez, M., Qasim, M., Rasheed, M.T., et al., Role of insect gut microbiota in pesticide degradation: a review, Front. Microbiol., 2022, vol. 13, p. 870462.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Sudakaran, S., Salem, H., Kost, C., and Kaltenpoth, M., Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae), Mol. Ecol., 2012, pp. 6134–6151.

  54. Tagliavia, M., Messina, E., Manachini, B., and Cappello, S., Bacterial symbionts of the palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in the Mediterranean Area, Biodiversity Data J., 2014, vol. 5, no. 1, pp. 9–20.

    Google Scholar 

  55. Tholen, A., Schink, A.B., and Brune, A., The gut microflora of Reticulitermes flavipes, its relation to oxygen, and evidence for oxygen-dependent acetogenesis by the most abundant Enterococcus sp., FEMS Microb. Ecol., 1997, vol. 24, pp. 137–149.

    Article  CAS  Google Scholar 

  56. Wan, F.H. and Yang, N.W., Invasion and management of agricultural alien insects in China, Annu. Rev. Entomol., 2011, vol. 61, pp. 77–98.

    Article  Google Scholar 

  57. Wenzel, M., Schönig, I., Berchtold, M., Kämpfer, P., and König, H., Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis, J. Appl. Microbiol., 2002, vol. 92, no. 1, pp. 32–40.

    Article  CAS  PubMed  Google Scholar 

  58. Xiao, R., Wang, X., Xie, E., Ji, T., Li, X., and Muhammad, A., An IMD-like pathway mediates the intestinal immunity to modulate the homeostasis of gut microbiota in Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Dev. Comp. Immunol., 2019, vol. 97, pp. 20–27.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, X., Zhang, F., and Lu, X., Diversity and functional roles of the gut microbiota in lepidopteran insects, Microorganisms, 2022, vol. 10, p. 1234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is a part of PhD program in the University of Zabol, Iran. The corresponding author gratefully acknowledges the financial support from the University of Zabol (Grant no. 0084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Khani.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflict of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

No approval of research ethics committees was required to accomplish the goals of this study because experimental work was conducted with an unregulated invertebrate species.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzane Basavand, Khani, A., Yaghubi, S. et al. Investigation on Gut Microbiota Diversity of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) Larvae. Biol Bull Russ Acad Sci 51, 294–301 (2024). https://doi.org/10.1134/S106235902360352X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106235902360352X

Keywords:

Navigation