Skip to main content

Advertisement

Log in

Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure

  • Cardiac Biomarkers (AA Quyyumi, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The primary aim of this review is to provide an in-depth examination of the role bioactive lipids—namely lysophosphatidic acid (LPA) and ceramides—play in inflammation-mediated cardiac remodeling during heart failure. With the global prevalence of heart failure on the rise, it is critical to understand the underlying molecular mechanisms contributing to its pathogenesis. Traditional studies have emphasized factors such as oxidative stress and neurohormonal activation, but emerging research has shed light on bioactive lipids as central mediators in heart failure pathology. By elucidating these intricacies, this review aims to:

  • Bridge the gap between basic research and clinical practice by highlighting clinically relevant pathways contributing to the pathogenesis and prognosis of heart failure.

  • Provide a foundation for the development of targeted therapies that could mitigate the effects of LPA and ceramides on heart failure.

  • Serve as a comprehensive resource for clinicians and researchers interested in the molecular biology of heart failure, aiding in better diagnostic and therapeutic decisions.

Recent Findings

Recent findings have shed light on the central role of bioactive lipids, specifically lysophosphatidic acid (LPA) and ceramides, in heart failure pathology. Traditional studies have emphasized factors such as hypoxia-mediated cardiomyocyte loss and neurohormonal activation in the development of heart failure. Emerging research has elucidated the intricacies of bioactive lipid-mediated inflammation in cardiac remodeling and the development of heart failure. Studies have shown that LPA and ceramides contribute to the pathogenesis of heart failure by promoting inflammation, fibrosis, and apoptosis in cardiac cells. Additionally, recent studies have identified potential targeted therapies that could mitigate the effects of bioactive lipids on heart failure, including LPA receptor antagonists and ceramide synthase inhibitors. These recent findings provide a promising avenue for the development of targeted therapies that could improve the diagnosis and treatment of heart failure.

Summary

In this review, we highlight the pivotal role of inflammation induced by bioactive lipid signaling and its influence on the pathogenesis of heart failure. By critically assessing the existing literature, we provide a comprehensive resource for clinicians and researchers interested in the molecular mechanisms of heart failure. Our review aims to bridge the gap between basic research and clinical practice by providing actionable insights and a foundation for the development of targeted therapies that could mitigate the effects of bioactive lipids on heart failure. We hope that this review will aid in better diagnostic and therapeutic decisions, further advancing our collective understanding and management of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Virani SS, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–596.

    Article  PubMed  Google Scholar 

  2. McDonagh TA, et al. focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2023;2023.

  3. Tyminska A, et al. Ischemic cardiomyopathy versus non-ischemic dilated cardiomyopathy in patients with reduced ejection fraction- clinical characteristics and prognosis depending on heart failure etiology (data from European Society of Cardiology Heart Failure Registries). Biology (Basel). 2022;11(2).

  4. Zhu J, et al. The incidence of acute myocardial infarction in relation to overweight and obesity: a meta-analysis. Arch Med Sci. 2014;10(5):855–62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rieckmann M, et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J Clin Invest. 2019;129(11):4922–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yue R, et al. NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: cardioprotective role of irisin. Cell Death Discov. 2021;7(1):50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu S, et al. Excessive inflammation impairs heart regeneration in zebrafish breakdance mutant after cryoinjury. Fish Shellfish Immunol. 2019;89:117–26.

    Article  CAS  PubMed  Google Scholar 

  8. Lee JW, et al. Lysophosphatidic acid receptor 4 is transiently expressed during cardiac differentiation and critical for repair of the damaged heart. Mol Ther. 2021;29(3):1151–63.

    Article  CAS  PubMed  Google Scholar 

  9. Wang F, et al. LPA(3)-mediated lysophosphatidic acid signaling promotes postnatal heart regeneration in mice. Theranostics. 2020;10(24):10892–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang J, et al. Lysophosphatidic acid is associated with cardiac dysfunction and hypertrophy by suppressing autophagy via the LPA3/AKT/mTOR pathway. Front Physiol. 2018;9:1315.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wen H, et al. Higher serum lysophosphatidic acids predict left ventricular reverse remodeling in pediatric dilated cardiomyopathy. Front Pediatr. 2021;9: 710720.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brown A, et al. Lysophosphatidic acid receptor mRNA levels in heart and white adipose tissue are associated with obesity in mice and humans. PLoS ONE. 2017;12(12): e0189402.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hait NC, Maiti A. The role of sphingosine-1-phosphate and ceramide-1-phosphate in inflammation and cancer. Mediators Inflamm. 2017;2017:4806541.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berwick ML, et al. The role of ceramide 1-phosphate in inflammation, cellular proliferation, and wound healing. Adv Exp Med Biol. 2019;1159:65–77.

    Article  CAS  PubMed  Google Scholar 

  15. Geraldo LHM, et al. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther. 2021;6(1):45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tokumura A, et al. Identification of human plasma lysophospholipase D, a lysophosphatidic acid-producing enzyme, as autotaxin, a multifunctional phosphodiesterase. J Biol Chem. 2002;277(42):39436–42.

    Article  CAS  PubMed  Google Scholar 

  17. Spohr TC, et al. LPA-primed astrocytes induce axonal outgrowth of cortical progenitors by activating PKA signaling pathways and modulating extracellular matrix proteins. Front Cell Neurosci. 2014;8:296.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fukushima N, Weiner JA, Chun J. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol. 2000;228(1):6–1.

    Article  CAS  PubMed  Google Scholar 

  19. McIntyre TM, et al. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA. 2003;100(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  20. Choi JW, et al. LPA receptors: subtypes and biological actions. Annu Rev Pharmacol Toxicol. 2010;50:157–86.

    Article  CAS  PubMed  Google Scholar 

  21. Ray R, et al. Lysophosphatidic acid-RAGE axis promotes lung and mammary oncogenesis via protein kinase B and regulating tumor microenvironment. Cell Commun Signal. 2020;18(1):170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li N, et al. Lysophosphatidic acid enhances human umbilical cord mesenchymal stem cell viability without differentiation via LPA receptor mediating manner. Apoptosis. 2017;22(10):1296–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tigyi G, et al. Revisiting the role of lysophosphatidic acid in stem cell biology. Exp Biol Med (Maywood). 2021;246(16):1802–9.

    Article  CAS  PubMed  Google Scholar 

  24. Pan X, et al. Lysophosphatidic acid may be a novel biomarker for early acute aortic dissection. Front Surg. 2021;8: 789992.

    Article  PubMed  Google Scholar 

  25. Axelsson Raja A, et al. Ablation of lysophosphatidic acid receptor 1 attenuates hypertrophic cardiomyopathy in a mouse model. Proc Natl Acad Sci USA. 2022;119(28): e2204174119.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wu L, et al. Lysophosphatidic acid mediates fibrosis in injured joints by regulating collagen type I biosynthesis. Osteoarthritis Cartilage. 2015;23(2):308–18.

    Article  CAS  PubMed  Google Scholar 

  27. Cao P, et al. Autocrine lysophosphatidic acid signaling activates beta-catenin and promotes lung allograft fibrosis. J Clin Invest. 2017;127(4):1517–30.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tang N, et al. Lysophosphatidic acid accelerates lung fibrosis by inducing differentiation of mesenchymal stem cells into myofibroblasts. J Cell Mol Med. 2014;18(1):156–69.

    Article  CAS  PubMed  Google Scholar 

  29. Bot M, et al. Lysophosphatidic acid triggers mast cell-driven atherosclerotic plaque destabilization by increasing vascular inflammation. J Lipid Res. 2013;54(5):1265–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kritikou E, et al. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice. Sci Rep. 2016;6:37585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aldi S, et al. Integrated human evaluation of the lysophosphatidic acid pathway as a novel therapeutic target in atherosclerosis. Mol Ther Methods Clin Dev. 2018;10:17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nathan S, et al. CREB-dependent LPA-induced signaling initiates a pro-fibrotic feedback loop between small airway basal cells and fibroblasts. Respir Res. 2021;22(1):97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Decato BE, et al. LPA(1) antagonist BMS-986020 changes collagen dynamics and exerts antifibrotic effects in vitro and in patients with idiopathic pulmonary fibrosis. Respir Res. 2022;23(1):61. Decato et al. studied the antifibrotic effects of the LPA1 antagonist BMS-986020 in idiopathic pulmonary fibrosis (IPF), a disease with limited treatment options. This research is groundbreaking because it not only highlights the potential of targeting the LPA-LPA1 pathway in IPF treatment, but also extends our understanding of the disease's mechanisms, particularly in relation to collagen turnover, that can have a therapeutic potential in number of other disease conditions where fibrosis is one of the hallmark of disease including heart failure.

  34. Palmer SM, et al. Randomized, double-blind, placebo-controlled, phase 2 trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest. 2018;154(5):1061–9.

    Article  PubMed  Google Scholar 

  35. Corte TJ, et al. Phase 2 trial design of BMS-986278, a lysophosphatidic acid receptor 1 (LPA(1)) antagonist, in patients with idiopathic pulmonary fibrosis (IPF) or progressive fibrotic interstitial lung disease (PF-ILD). BMJ Open Respir Res. 2021;8(1).

  36. Shu H, et al. Emerging roles of ceramide in cardiovascular diseases. Aging Dis. 2022;13(1):232–5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Mozaffarian D, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131(4):e29–32.

    PubMed  Google Scholar 

  38. Zouggari Y, et al. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abo-Aly M, et al. Prognostic significance of activated monocytes in patients with ST-elevation myocardial infarction. Int J Mol Sci. 2023;24(14).

  40. Maekawa Y, et al. Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction:a possible role for left ventricular remodeling. J Am Coll Cardiol. 2002;39(2):241–6.

    Article  PubMed  Google Scholar 

  41. Panizzi P, et al. Impaired infarct healing in atherosclerotic mice with Ly-6C(hi) monocytosis. J Am Coll Cardiol. 2010;55(15):1629–38.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dutta P, et al. Myocardial infarction accelerates atherosclerosis. Nature. 2012;487(7407):325–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reina-Couto M, et al. Inflammation in human heart failure: major mediators and therapeutic targets. Front Physiol. 2021;12: 746494.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shen JL, Xie XJ. Insight into the pro-inflammatory and profibrotic role of macrophage in heart failure with preserved ejection fraction. J Cardiovasc Pharmacol. 2020;76(3):276–85.

    Article  CAS  PubMed  Google Scholar 

  45. Yasuda D, et al. Lysophosphatidic acid-induced YAP/TAZ activation promotes developmental angiogenesis by repressing Notch ligand Dll4. J Clin Invest. 2019;129(10):4332–49.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pei J, et al. LPA(2) Contributes to vascular endothelium homeostasis and cardiac remodeling after myocardial infarction. Circ Res. 2022;131(5):388–93.

    Article  CAS  PubMed  Google Scholar 

  47. Chen X, et al. Serum lysophosphatidic acid concentrations measured by dot immunogold filtration assay in patients with acute myocardial infarction. Scand J Clin Lab Invest. 2003;63(7–8):497–503.

    Article  CAS  PubMed  Google Scholar 

  48. •• Tripathi H, et al. Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction. J Mol Cell Cardiol. 2020;149:95-1. The study by Tripathi et al. uncovers the pivotal role of autotaxin inhibition in reducing cardiac inflammation and adverse remodeling after myocardial infarction, offering a novel therapeutic approach for heart disease. This research is important in cardiac research as it underscores the fact that targeting the ATX/LPA signaling nexus can significantly improve cardiac recovery and function post-infarction, a major advancement in treating heart failure.

  49. Murphy AJ, et al. ApoE regulates hematopoietic stem cell proliferation, monocytosis, and monocyte accumulation in atherosclerotic lesions in mice. J Clin Invest. 2011;121(10):4138–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Tripathi H, et al. Myeloid-Specific Deletion of Lipid Plpp3 (Phosphate Phosphatase 3) Increases Cardiac Inflammation After Myocardial Infarction. Arterioscler Thromb Vasc Biol. 2023;43(2):379-81. Tripathi et al and coauthors examined the role of lipid phosphate phosphatase 3 (LPP3) in myeolid cells in cardiac inflammation after myocardial infarction. The studies used loss of function genetic animal model that confirmed that deletion of LPP3 results in unopposed lysophosphatidic acid signaling which exacerbates post-myocardial infarction inflammation. The heightened inflammation in LPP3 cKO mice results in worsening cardiac function and larger scar size after ischemic injury.

  51. Sokolowska E, Blachnio-Zabielska A. The role of ceramides in insulin resistance. Front Endocrinol (Lausanne). 2019;10:577.

    Article  PubMed  Google Scholar 

  52. Lee SY, et al. Cardiomyocyte specific deficiency of serine palmitoyltransferase subunit 2 reduces ceramide but leads to cardiac dysfunction. J Biol Chem. 2012;287(22):18429–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hla T, Dannenberg AJ. Sphingolipid signaling in metabolic disorders. Cell Metab. 2012;16(4):420–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ji R, et al. Increased de novo ceramide synthesis and accumulation in failing myocardium. JCI Insight. 2017;2(14).

  55. Hilvo M, et al. Prediction of residual risk by ceramide-phospholipid score in patients with stable coronary heart disease on optimal medical therapy. J Am Heart Assoc. 2020;9(10): e015258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: a meta-analysis of longitudinal studies. J Clin Lipidol. 2020;14(2):176–85.

    Article  PubMed  Google Scholar 

  57. Havulinna AS, et al. Circulating ceramides predict cardiovascular outcomes in the population-based FINRISK 2002 cohort. Arterioscler Thromb Vasc Biol. 2016;36(12):2424–30.

    Article  CAS  PubMed  Google Scholar 

  58. Nwabuo CC, et al. Association of circulating ceramides with cardiac structure and function in the community: the framingham heart study. J Am Heart Assoc. 2019;8(19): e013050.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chaurasia B, et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365(6451):386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chun L, et al. Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res Clin Pract. 2011;93(1):77–85.

    Article  PubMed  Google Scholar 

  61. Cantalupo A, et al. Endothelial sphingolipid de novo synthesis controls blood pressure by regulating signal transduction and NO via ceramide. Hypertension. 2020;75(5):1279–88.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang DX, Zou AP, Li PL. Ceramide-induced activation of NADPH oxidase and endothelial dysfunction in small coronary arteries. Am J Physiol Heart Circ Physiol. 2003;284(2):H605–12.

    Article  CAS  PubMed  Google Scholar 

  63. Zheng T, et al. Sphingomyelinase and ceramide analogs induce contraction and rises in [Ca(2+)](i) in canine cerebral vascular muscle. Am J Physiol Heart Circ Physiol. 2000;278(5):H1421–8.

    Article  CAS  PubMed  Google Scholar 

  64. Li H, et al. Dual effect of ceramide on human endothelial cells: induction of oxidative stress and transcriptional upregulation of endothelial nitric oxide synthase. Circulation. 2002;106(17):2250–6.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang QJ, et al. Ceramide mediates vascular dysfunction in diet-induced obesity by PP2A-mediated dephosphorylation of the eNOS-Akt complex. Diabetes. 2012;61(7):1848–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bharath LP, et al. Ceramide-initiated protein phosphatase 2A activation contributes to arterial dysfunction in vivo. Diabetes. 2015;64(11):3914–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wretlind A, et al. Ceramides are decreased after liraglutide treatment in people with type 2 diabetes: a post hoc analysis of two randomized clinical trials. Lipids Health Dis. 2023;22(1):160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Presa N, et al. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta. 2016;1861(5):402–9.

    Article  CAS  PubMed  Google Scholar 

  69. Arana L, et al. Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab. 2013;304(11):E1213–26.

    Article  CAS  PubMed  Google Scholar 

  70. Gomez-Munoz A, et al. New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta. 2013;1831(6):1060–6.

    Article  CAS  PubMed  Google Scholar 

  71. Hotamisligil GS, et al. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 1995;95(5):2409–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmad R, et al. The synergy between palmitate and TNF-alpha for CCL2 production is dependent on the TRIF/IRF3 pathway: implications for metabolic inflammation. J Immunol. 2018;200(10):3599–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wouters K, et al. Circulating classical monocytes are associated with CD11c(+) macrophages in human visceral adipose tissue. Sci Rep. 2017;7:42665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Al-Rashed F, et al. Ceramide kinase regulates TNF-alpha-induced immune responses in human monocytic cells. Sci Rep. 2021;11(1):8259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Drosatos K, Schulze PC. Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep. 2013;10(2):109–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamamoto T, Sano M. Deranged myocardial fatty acid metabolism in heart failure. Int J Mol Sci. 2022;23(2).

  77. Datta Chaudhuri R, et al. Cardiac-specific overexpression of HIF-1alpha during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes. Biochem Biophys Res Commun. 2021;537:100–8.

    Article  CAS  PubMed  Google Scholar 

  78. Bonney S, et al. Cardiac Per2 functions as novel link between fatty acid metabolism and myocardial inflammation during ischemia and reperfusion injury of the heart. PLoS ONE. 2013;8(8): e71493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 2010;31(9):1085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li C, et al. HIF1alpha-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Sci Rep. 2018;8(1):3603.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Fernandez-Caggiano M, Eaton P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ. 2021;28(4):1149–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. No YR, et al. HIF1alpha-induced by lysophosphatidic acid is stabilized via interaction with MIF and CSN5. PLoS ONE. 2015;10(9): e0137513.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Higgins DF, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117(12):3810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Epstein Shochet G, et al. Hypoxia inducible factor 1A supports a pro-fibrotic phenotype loop in idiopathic pulmonary fibrosis. Int J Mol Sci. 2021;22(7).

  85. Wang P, et al. Disruption of adipocyte HIF-1alpha improves atherosclerosis through the inhibition of ceramide generation. Acta Pharm Sin B. 2022;12(4):1899–912.

    Article  PubMed  Google Scholar 

  86. Hadas Y, et al. Altering sphingolipid metabolism attenuates cell death and inflammatory response after myocardial infarction. Circulation. 2020;141(11):916–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Al-Rashed F, et al. Neutral sphingomyelinase 2 regulates inflammatory responses in monocytes/macrophages induced by TNF-alpha. Sci Rep. 2020;10(1):16802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Dr. Abdel-Latif is supported by NIH Grant R01 HL124266.

Author information

Authors and Affiliations

Authors

Contributions

R.C., A.A-L., and T.S. wrote the main manuscript text and R.C. prepared figure 1. M.W.T. reviewed and edited the manuscript. A.A-L. reviewed and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ahmed Abdel-Latif.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R., Suhan, T., Tarhuni, M.W. et al. Lysophosphatidic Acid-Mediated Inflammation at the Heart of Heart Failure. Curr Cardiol Rep 26, 113–120 (2024). https://doi.org/10.1007/s11886-024-02023-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-024-02023-8

Keywords

Navigation