Skip to main content
Log in

Solvothermal Synthesis of PtNi Nanoparticle Thin Film Cathode with Superior Thermal Stability for Low Temperature Solid Oxide Fuel Cells

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

This work adopts solvothermal synthesis to fabricate PtNi nanoparticles as thin film cathodes with superior resistance against thermally driven agglomeration for low temperature solid oxide fuel cells (LT-SOFCs) operating at 450 ºC. Metal-based porous electrodes are common choices for thin film LT-SOFCs, but pure metals with high density nanoscale porosities are vulnerable to thermal agglomeration, which imposes challenges to maintaining high performance with long-term stability. Typical Pt-based thin film cathodes are previously reported to sustain a record high 600 ºC of thermal annealing with acceptable morphological stability, but the temperature is still too low for practical LT-SOFC application. In this work, the solvothermal synthesized PtNi nanoparticle thin films show superior thermal stability, sustaining 10 h of annealing at 800 ºC without significant agglomeration observed. By controlling the length of synthesis time, the particle sizes and Pt loading ratio can be varied. The cost-effective solvothermal synthesis process for the fabrication of PtNi thin film cathode is a promising way for LT-SOFC manufacturing in scale as it involves no vacuum process like typical sputtering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, J., Ricote, S., Hendriksen, P. V., & Chen, Y. (2022). Advanced materials for thin-film solid oxide fuel cells: Recent progress and challenges in boosting the device performance at low temperatures. Advanced Functional Materials, 32, 2111205.

    Article  CAS  Google Scholar 

  2. Baldi, F., Moret, S., Tammi, K., & Maréchal, F. (2020). The role of solid oxide fuel cells in future ship energy systems. Energy, 194, 116811.

    Article  Google Scholar 

  3. Jo, M., Kim, S., & Lee, C. (2022). Morphology engineering for compact electrolyte layer of solid oxide fuel cell with roll-to-roll eco-production. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 431–441.

    Article  Google Scholar 

  4. Ji, S., & Kim, W. (2022). Is coating oxide on porous metal thin-film for low-temperature solid oxide fuel cell cathode a panacea for performance enhancement? International Journal of Precision Engineering and Manufacturing, 23, 445–451.

    Article  Google Scholar 

  5. Ji, S., Kim, Y., & Cha, S. W. (2022). Operating cost savings in the atomic layer deposition process of ultrathin electrolyte for solid oxide fuel cells by applying oxygen plasma. International Journal of Precision Engineering and Manufacturing, 23, 573–579.

    Article  Google Scholar 

  6. Chen, Y., Choi, Y., Yoo, S., Ding, Y., Yan, R., Pei, K., et al. (2018). A highly efficient multi-phase catalyst dramatically enhances the rate of oxygen reduction. Joule, 2, 938–949.

    Article  CAS  Google Scholar 

  7. Choi, H. J., Bae, K., Grieshammer, S., Han, G. D., Park, S. W., Kim, J. W., et al. (2018). Surface tuning of solid oxide fuel cell cathode by atomic layer deposition. Advanced Energy Materials, 8, 1802506.

    Article  Google Scholar 

  8. Choi, S., Kucharczyk, C. J., Liang, Y., Zhang, X., Takeuchi, I., Ji, H.-I., et al. (2018). Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nature Energy, 3, 202–210.

    Article  ADS  CAS  Google Scholar 

  9. Tian, Y., Li, J., Liu, Y., Yang, J., Liu, B., Jia, L., et al. (2018). Preparation and properties of PrBa0.5Sr0.5Co1.5Fe0.5O5+ δ as novel oxygen electrode for reversible solid oxide electrochemical cell. International Journal of Hydrogen Energy, 43, 12603–12609.

    Article  CAS  Google Scholar 

  10. Li, H.-Y., & Su, P.-C. (2023). Applied current on the suppression of strontium segregation in Sr2Fe1.5Mo0.5O6-δ electrode for improved oxygen evolution reaction. Applied Materials Today, 31, 101769.

    Article  Google Scholar 

  11. Muñoz-García, A. B., Bugaris, D. E., Pavone, M., Hodges, J. P., Huq, A., Chen, F., et al. (2012). Unveiling structure–property relationships in Sr2Fe1.5Mo0.5O6−δ, an electrode material for symmetric solid oxide fuel cells. Journal of the American Chemical Society, 134, 6826–6833.

    Article  PubMed  Google Scholar 

  12. Huang, H., Nakamura, M., Su, P., Fasching, R., Saito, Y., & Prinz, F. B. (2006). High-performance ultrathin solid oxide fuel cells for low-temperature operation. Journal of the Electrochemical Society., 154, B20.

    Article  Google Scholar 

  13. Wang, X., Huang, H., Holme, T., Tian, X., & Prinz, F. B. (2008). Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. Journal of Power Sources, 175, 75–81.

    Article  ADS  CAS  Google Scholar 

  14. Liu, K.-Y., Fan, L., Yu, C.-C., & Su, P.-C. (2015). Thermal stability and performance enhancement of nano-porous platinum cathode in solid oxide fuel cells by nanoscale ZrO2 capping. Electrochemistry Communications, 56, 65–69.

    Article  CAS  Google Scholar 

  15. Liu, K.-Y., Yoon, Y. J., Lee, S. H., & Su, P.-C. (2017). Sputtered nanoporous PtNi thin film cathodes with improved thermal stability for low temperature solid oxide fuel cells. Electrochimica Acta, 247, 558–563.

    Article  CAS  Google Scholar 

  16. Liu, K.-Y., Baek, J. D., Ng, C. S., & Su, P.-C. (2018). Improving thermal stability of nanoporous platinum cathode at platinum/yttria-stabilized zirconia interface by oxygen plasma treatment. Journal of Power Sources, 396, 73–79.

    Article  ADS  CAS  Google Scholar 

  17. Van Herle, J., & McEvoy, A. (1994). Oxygen diffusion through silver cathodes for solid oxide fuel cells. Journal of Physics and Chemistry of Solids, 55, 339–347.

    Article  ADS  Google Scholar 

  18. Yu, C.-C., Baek, J. D., Su, C.-H., Fan, L., Wei, J., Liao, Y.-C., et al. (2016). Inkjet-printed porous silver thin film as a cathode for a low-temperature solid oxide fuel cell. ACS Applied Materials & Interfaces, 8, 10343–10349.

    Article  CAS  Google Scholar 

  19. Kamlungsua, K., Lee, T.-H., Lee, S., Su, P.-C., & Yoon, Y.-J. (2021). Inkjet-printed Ag@ SDC core-shell nanoparticles as a high-performance cathode for low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 46, 30853–30860.

    Article  CAS  Google Scholar 

  20. Ji, S., Kim, W., Han, S., Jeong, S., & Park, T. (2023). Stability enhancement of reformate-fueled, low-temperature solid oxide fuel cell with nickel thin-film anode by water bubbling. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 999–1006.

    Article  Google Scholar 

  21. Shin, J. W., Lee, S., Go, D., Yang, B. C., Kim, T., Jo, S. E., et al. (2023). Nanometer Yttria-doped ceria shell by atomic layer deposition over porous pt for improved oxygen reduction reactions. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 773–781.

    Article  Google Scholar 

  22. Tucker, M. C. (2010). Progress in metal-supported solid oxide fuel cells: A review. Journal of Power Sources, 195, 4570–4582.

    Article  ADS  CAS  Google Scholar 

  23. Stephens, I. E., Bondarenko, A. S., Grønbjerg, U., Rossmeisl, J., & Chorkendorff, I. (2012). Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy and Environmental Science, 5, 6744–6762.

    Article  CAS  Google Scholar 

  24. Greeley, J., Stephens, I., Bondarenko, A., Johansson, T. P., Hansen, H. A., Jaramillo, T., et al. (2009). Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chemistry, 1, 552–556.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Du, J.-J., Chen, C., Gan, Y.-L., Zhang, R.-H., Yang, C.-Y., & Zhou, X.-W. (2014). Facile one-pot hydrothermal synthesis of Pt nanoparticles and their electrocatalytic performance. International Journal of Hydrogen Energy, 39, 17634–17637.

    Article  CAS  Google Scholar 

  26. Wang, Y., Cai, F., Guo, P., Lei, Y., Xi, Q., & Wang, F. (2019). Short-time hydrothermal synthesis of CuBi2O4 nanocolumn arrays for efficient visible-light photocatalysis. Nanomaterials, 9, 1257.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yang, Z., Wang, M., Liu, G., Chen, M., Ye, F., Zhang, W., et al. (2020). Octahedral Pt-Ni nanoparticles prepared by pulse-like hydrothermal method for oxygen reduction reaction. Ionics, 26, 293–300.

    Article  CAS  Google Scholar 

  28. Koczkur, K. M., Mourdikoudis, S., Polavarapu, L., & Skrabalak, S. E. (2015). Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions, 44, 17883–17905.

    Article  CAS  PubMed  Google Scholar 

  29. Yin, J., Wang, J., Li, M., Jin, C., & Zhang, T. (2012). Iodine ions mediated formation of monomorphic single-crystalline platinum nanoflowers. Chemistry of Materials, 24, 2645–2654.

    Article  CAS  Google Scholar 

  30. Vadivel, M., Babu, R. R., Ramamurthi, K., & Arivanandhan, M. (2016). CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparticles. Ceramics International, 42, 19320–19328.

    Article  CAS  Google Scholar 

  31. Yang, P., Yuan, X., Hu, H., Liu, Y., Zheng, H., Yang, D., et al. (2018). Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Advanced Functional Materials, 28, 1704774.

    Article  Google Scholar 

  32. Wang, M., Chen, X., Xu, W., Wang, Z., He, P., & Lu, Z. (2022). Gram-scale synthesis of carbon-supported Sub-5 nm PtNi nanocrystals for efficient oxygen reduction. Metals, 12, 1078.

    Article  Google Scholar 

  33. Leteba, G. M., Wang, Y.-C., Slater, T. J., Cai, R., Byrne, C., Race, C. P., et al. (2021). Oleylamine aging of PtNi nanoparticles giving enhanced functionality for the oxygen reduction reaction. Nano Letters, 21, 3989–3996.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, F., Richards, V. N., Shields, S. P., & Buhro, W. E. (2014). Kinetics and mechanisms of aggregative nanocrystal growth. Chemistry of Materials, 26, 5–21.

    Article  Google Scholar 

  35. Schladt, T. D., Schneider, K., Schild, H., & Tremel, W. (2011). Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Transactions, 40, 6315–6343.

    Article  CAS  PubMed  Google Scholar 

  36. Vreeland, E. C., Watt, J., Schober, G. B., Hance, B. G., Austin, M. J., Price, A. D., et al. (2015). Enhanced nanoparticle size control by extending LaMer’s mechanism. Chemistry of Materials, 27, 6059–6066.

    Article  CAS  Google Scholar 

  37. Kirakosyan, A., Kim, J., Lee, S. W., Swathi, I., Yoon, S.-G., & Choi, J. (2017). Optical properties of colloidal CH3NH3PbBr 3 nanocrystals by controlled growth of lateral dimension. Crystal Growth and Design, 17, 794–799.

    Article  CAS  Google Scholar 

  38. Li, W., Sun, Z., Tian, D., Nevirkovets, I. P., & Dou, S.-X. (2014). Platinum dendritic nanoparticles with magnetic behavior. Journal of Applied Physics, 116, 033911.

    Article  ADS  Google Scholar 

  39. Liu, Y., Chen, H., Tian, C., Geng, D., Wang, D., & Bai, S. (2019). One-pot synthesis of highly efficient carbon-supported polyhedral Pt 3 Ni alloy nanoparticles for oxygen reduction reaction. Electrocatalysis, 10, 613–620.

    Article  CAS  Google Scholar 

  40. Chen, S., Wu, H., Tao, J., Xin, H., Zhu, Y., & Chen, J. (2019). Pt–Ni seed-core-frame hierarchical nanostructures and their conversion to nanoframes for enhanced methanol electro-oxidation. Catalysts, 9, 39.

    Article  CAS  Google Scholar 

  41. Wang, H., Kou, X., Zhang, J., & Li, J. (2008). Large scale synthesis and characterization of Ni nanoparticles by solution reduction method. Bulletin of Materials Science, 31, 97–100.

    Article  Google Scholar 

  42. Strasser, P., Koh, S., Anniyev, T., Greeley, J., More, K., Yu, C., et al. (2010). Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2, 454–460.

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the Singapore Ministry of Education under AcRF Tier 1 Project No. RG73/22.

Author information

Authors and Affiliations

Authors

Contributions

JS: Conceptualization, Investigation, Writing-Original draft preparation, Writing-Review and Editing. KK: Conceptualization, Methodology, Investigation. H-YL: Investigation. P-CS: Supervision, Writing-Review & Editing.

Corresponding author

Correspondence to Pei-Chen Su.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 740 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, J., Kamlungsua, K., Li, HY. et al. Solvothermal Synthesis of PtNi Nanoparticle Thin Film Cathode with Superior Thermal Stability for Low Temperature Solid Oxide Fuel Cells. Int. J. of Precis. Eng. and Manuf.-Green Tech. (2024). https://doi.org/10.1007/s40684-023-00576-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40684-023-00576-7

Keywords

Navigation