Skip to main content
Log in

Synthesis, Crystal Structure, and Mechanism of Formation of the Half-Sandwich Ruthenium Complexes Based on 1,2-Dicarba-closo-dodecaborane-1,2-dithiolate Ligand and PhCH(OH)C≡CH

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Treatment of 16e complex (p-cymene)Ru(S2C2B10H10) (1) with PhCH(OH)C≡CH in CH2Cl2 at room temperature leads to two novel complexes (p-cymene)Ru(S2C2B10H9)(PhCH=CCH2OCH(Ph)C≡CH) (2) and (p-cymene)Ru(S2C2B10H9)(PhCH(OH)C=CH2) (3). Both complexes have been characterized through elemental analysis, mass, IR and NMR spectroscopies. Notably, complex 2 has been studied by X-ray diffraction. It has been determined that complex 2 crystallizes in triclinic system, space group P\(\overline{1}\) with: a = 11.1020(10) Å, b = 11.8445(10) Å, c = 13.8071(12) Å, α = 78.3630(10)°, β = 75.7330(10)°, γ = 68.7580(10)°, C30H38B10ORuS2, Mr = 687.89, V = 1627.3(2) Å3, ρ = 1.404 g/cm3, Z = 2, F(000) = 704, µ(MoKα) = 0.636 mm–1, R = 0.0388 and ωR = 0.1100 for 5658 observed reflections (I > 2σ(I)). The formation mechanisms for the title complexes have been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

REFERENCES

  1. M. Chen, D. Zhao, J. Xu, et al., Angew. Chem. Int. Ed. 60, 7838 (2020). https://doi.org/10.1002/anie.202015299

    Article  CAS  Google Scholar 

  2. F. Issa, M. Kassiou, and L. M. Rendina, Chem. Rev. 111, 5701 (2011). https://doi.org/10.1021/cr2000866

    Article  PubMed  CAS  Google Scholar 

  3. Y. Chen, F. K. Du, and L. Y. Tang, Mol. Ther. Oncolytics 24, 400 (2022). https://doi.org/10.1016/j.omto.2022.01.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. A. Marfavi, P. Kavianpour, L. M. Rendina, Nat. Rev. Chem. 6, 486 (2022)https://doi.org/10.1038/s41570-022-00400-x

  5. A. V. Shmal’ko and I. B. Sivaev, Russ. J. Inorg. Chem. 64, 1726 (2019). https://doi.org/10.1134/S0036023619140067

    Article  Google Scholar 

  6. E. Yu. Matveev, V. V. Avdeeva, K. Yu. Zhizhin, et al., Inorganics 10, 238 (2022).  https://doi.org/10.3390/inorganics10120238

    Article  CAS  Google Scholar 

  7. A. A. Kal’tenberg, A. D. Bashilova, N. V. Somov, et al., Russ. J. Inorg. Chem. 68, 1247 (2023)https://doi.org/10.1134/S0036023623700286

  8. E. Y. Matveev, T. M. Garaev, S. S. Novikov, et al., Russ. J. Inorg. Chem. 68, 670 (2023)https://doi.org/10.1134/S0036023623600533

  9. V. V. Avdeeva, T. M. Garaev, E. A. Malinina, et al., Russ. J. Inorg. Chem. 67, 28 (2022). https://doi.org/10.1134/S0036023622010028

    Article  CAS  Google Scholar 

  10. A. V. Kopytin, E. S. Turyshev, M. S. Madraimov, et al., Russ. J. Inorg. Chem. 68, 6 (2023)https://doi.org/10.1134/S0036023622700103

  11. X. Zhang, H. Dai, and H. Yan, Handbook of Boron Science (2018). https://doi.org/10.1142/9781786344656_0001

    Book  Google Scholar 

  12. J. X. Li, J. K. Xu, L. B. Yan, et al., Dalton Trans. 50, 8029 (2021). https://doi.org/10.1039/d1dt00233c

    Article  PubMed  CAS  Google Scholar 

  13. J. R. Hu, W. H. Chen, D. K. Nie, et al., Russ. J. Coord. Chem. 42, 783 (2016). https://doi.org/10.1134/S1070328416120034

    Article  CAS  Google Scholar 

  14. S. Liu, Y. F. Han, G. X. Jin, et al., Chem. Soc. Rev. 36, 1543 (2007). https://doi.org/10.1039/B701869J

    Article  PubMed  Google Scholar 

  15. X. Meng, F. S. Wang, G. X. Jin, et al., Coord. Chem. Rev. 254, 1260 (2010). https://doi.org/10.1016/j.ccr.2009.07.002

    Article  CAS  Google Scholar 

  16. Z. J.Wang, H. D. Ye, Y. G. Li, et al., J. Am. Chem. Soc. 135, 11289 (2013). https://doi.org/10.1021/ja4047075

    Article  PubMed  CAS  Google Scholar 

  17. Z. J. Yao, G. X. Jin, et al., Coord. Chem. Rev. 257, 2522 (2013). .https://doi.org/10.1016/j.ccr.2013.02.004

    Article  CAS  Google Scholar 

  18. J. R. Hu, J. H. Wang, K. G. Jin, et al., Russ. J. Coord. Chem. 46, 437 (2020). https://doi.org/10.1134/S1070328420060019

    Article  CAS  Google Scholar 

  19. J. R. Hu, W. J. Dong, J. H. Wang, et al., Inorg. Chem. Commun. 143, 109722 (2022). https://doi.org/10.1016/j.inoche.2022.109722

    Article  CAS  Google Scholar 

  20. J. R. Hu, J. H. Wang, et al., J. Struct. Chem. 63, 1551 (2022). .https://doi.org/10.1134/S0022476622100018

    Article  CAS  Google Scholar 

  21. M. A. Bennett, T. N. Huang, T. W. Matheson, et al., Inorg. Synth. 21, 74 (1982). https://doi.org/10.1002/9780470132524.ch16

    Article  CAS  Google Scholar 

  22. J. Mortier, M. Vaultier, F. Carreaux, et al., J. Org. Chem. 63, 3515 (1998). https://doi.org/10.1002/chin.199839036

    Article  CAS  Google Scholar 

  23. M. Herberhold, H. Yan, W. Milius, et al., J. Organomet. Chem. 604, 170 (2000). https://doi.org/10.1016/S0022-328X(00)00221-7

    Article  CAS  Google Scholar 

  24. Bruker (2000). SMART (Version 5.0), SAINT (Version 6), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

  25. E. Bustelo, M. Jiménez-Tenorio, M. C. Puerta, et al., Organometallics 26, 4300 (2007). https://doi.org/10.1021/om700431n

    Article  CAS  Google Scholar 

  26. K. Y. Ghebreyessus, J. H. Nelson, et al., Inorg. Chem. Commun. 136, 1044 (2003). https://doi.org/10.1016/S1387-7003(03)00177-1

    Article  CAS  Google Scholar 

  27. D. H. Wu, C. H. Wu, Y. Z. Li, et al., Dalton Trans. 2, 285 (2009). https://doi.org/10.1039/B810831E

    Article  Google Scholar 

  28. J. R. Hu, W. J. Zhang, L. H. Liu, et al., Russ. J. Coord. Chem. 40, 954 (2014). https://doi.org/10.1134/S1070328414120057

    Article  CAS  Google Scholar 

  29. C. Bianchini, N. Mantovani, A. Marchi, et al., Organometallics 18, 4501 (1999). https://doi.org/10.1021/om990375x

    Article  CAS  Google Scholar 

  30. D. H. Wu, Y. G. Li, L. Han, et al., Inorg. Chem. 47, 6524 (2008). https://doi.org/10.1021/ic800619z

    Article  PubMed  CAS  Google Scholar 

  31. N. d’Alessandro, M. D. Deo, M. Bonetti, et al., Eur. J. Inorg. Chem. 810 (2004). https://doi.org/10.1002/ejic.200300562

  32. C. Bianchini, N. Mantovani, L. Marvelli, et al., J. Organomet. Chem. 617, 233 (2001). https://doi.org/10.1016/S0022-328X(00)00553-2

    Article  Google Scholar 

  33. V. Cadierno, M. P. Gamasa, J. Gimeno, et al., Organometallics 18, 2821 (1999). https://doi.org/10.1021/om990194

    Article  CAS  Google Scholar 

Download references

Funding

Project supported by the Public Welfare Research Plan Project of Jiaxing City (nos. 2023AY11025; 2021AY10044), the National Natural Science Foundation of China (no. 21261020), the Research Start-up Funding of Jiaxing Nanhu University (nos. QD61220001; N41472001-YB14), and the Open Fund of Zhejiang Engineering Technology Center for Arene Sulfonic Acid (no. ERC202302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Liu.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J.R., Wang, J.H., Jin, J.Y. et al. Synthesis, Crystal Structure, and Mechanism of Formation of the Half-Sandwich Ruthenium Complexes Based on 1,2-Dicarba-closo-dodecaborane-1,2-dithiolate Ligand and PhCH(OH)C≡CH. Russ. J. Inorg. Chem. 68, 1956–1962 (2023). https://doi.org/10.1134/S0036023623603094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623603094

Keywords:

Navigation