Skip to main content
Log in

Solubility and Thermodynamic Analysis of Lithium Hydroxide in Lye System

  • PHYSICOCHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Selectively crystallization and separation of LiOH·H2O from the bipolar membrane preparation lye is the key to the direct preparation of lithium hydroxide from bipolar membranes, and the thermodynamic equilibrium data of LiOH·H2O in the lithium-sodium mixed lye system is crucial for the control of the crystallization process. The solubility of LiOH·H2O has been determined at different temperatures and sodium hydroxide solution concentrations in the temperature range from 278.15 to 328.15 K. It has been found that none of the effects of temperature on the solubility of LiOH·H2O in the alkaline system are obvious, and the solubility only decreased firstly and then increased with the increase of temperature in a small magnitude; the concentration of aqueous NaOH solution was the main factor affecting the solubility. The experimental data of LiOH·H2O solubility have been corrected using E-DH and Apelblat equations, and the relative deviations have been calculated within ±0.06. The enthalpy change of dissolution ΔHd, entropy change ΔSd, and Gibbs free energy change ΔGd of LiOH·H2O in NaOH have been obtained by the thermodynamic calculations of dissolution, which indicates that the dissolution process is an exothermic, entropy-decreasing, and non-spontaneous process, and that the enthalpy change of dissolution and entropy change increases with the concentration of NaOH, and decreases slightly in the high concentration region, and the Gibbs free energy change ΔGd increases with the concentration of NaOH, and the Gibbs free energy change ΔGd increases with the concentration of NaOH. The Gibbs free energy change ΔGd increases with NaOH concentration, and the dissolution process is entropy-controlled at low NaOH concentration, and gradually changes to enthalpy-controlled process with increasing NaOH concentration. The results of the study provide fundamental data for the design of the distillation crystallization process of LiOH·H2O, a LiOH base prepared from bipolar membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. S. T. Song, X. C. Deng, J. Sun, and Z. H. Zhu, J. Salt Sci. Chem. Ind. 1, 32 (2005). https://doi.org/10.16570/j.cnki.issn1673-6850.2005.01.011

    Article  Google Scholar 

  2. S. W. Jia, Xinjiang Nonferr. Metal. S2, 94 (2011). https://doi.org/10.16206/j.cnki.65-1136/tg.2011.s2.047

    Article  Google Scholar 

  3. S. J. Deng, H. B. Sun, J. Z. Qin, M. X. Yu, J. J. Su, L. G. Li, and Y. Zeng. J. Salt Lake Res. 27, 77 (2019).

    CAS  Google Scholar 

  4. C. Wang, H. Wang, and L. Huang, J. Salt Chem. Ind. 8, 25 (2016). https://doi.org/10.16570/j.cnki.issn1673-6850.2016.08.006

    Article  Google Scholar 

  5. X. Zhao, Q. Zhang, H. H. Wu, X. C. Hao, L. Wang, and X. P. Huang, Prog. Chem. 7, 796 (2017).

    ADS  Google Scholar 

  6. Q. Wang, Y. J. Zhao, Y. Liu, Y. H. Wang, M. Wang, and X. Xiang, CIESC J. 72, 2905 (2021).

    CAS  Google Scholar 

  7. P. H. Ma and P. X. Zhang, Bull. Chin. Acad. Sci. 3, 210 (1999). https://doi.org/10.16418/j.issn.1000-3045.1999.03.012

    Article  Google Scholar 

  8. P. Chen, S. Y. Tang, H. R. Yue, C. J. Liu, C. Li, and B. Liang, Int. Eng. Chem. Res. 56, 5668 (2017). https://doi.org/10.1021/acs.iecr.6b04892

    Article  CAS  Google Scholar 

  9. Y. Sun, Q. Wang, Y. H. Wang, R. P. Yun and X. Xiang, Sep. Purif. Technol. 256, 117807 (2021). https://doi.org/10.1016/j.seppur.2020.117807

    Article  CAS  Google Scholar 

  10. W. J. Brian, U. S. Mineral Commodity Summarie (Geological Survey, 2018).

  11. Z. H. Zhu, F. Q. Li, C. L. Zhu, Q. Zhuge, Z. J. Peng, and G. F. Jia, Inorg. Chem. Ind. 46, 6 (2014).

    Article  CAS  Google Scholar 

  12. Z. H. Zhu, PhD Thesis, University of CAS, Xining, 2014.

  13. B. Yuan, J. Wang, W. Cai, Y. R. Yang, M. G. Yi, and L. Xiang, Particuology 34, 97 (2017). https://doi.org/10.1016/j.partic.2017.01.005

    Article  CAS  Google Scholar 

  14. C. H. Huang and T. W. Xu, Environ. Sci. Technol. 40, 5233 (2006). https://doi.org/10.1021/es060039p

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Q. B. Chen, Z. Y. Ji, J. Liu, Y. Y. Zhao, S. Z. Wang, and J. S. Yuan, J. Membr. Sci. 548, 408 (2018). https://doi.org/10.1016/j.memsci.2017.11.040

    Article  CAS  Google Scholar 

  16. P. Y. Ji, Z. Y. Ji, Q. B. Chen, J. Liu, Y. Y. Zhao, S. Z. Wang, F. Li, and J. S. Yuan, Sep. Purif. Technol. 207, 1 (2018). https://doi.org/10.1016/j.seppur.2018.06.012

    Article  CAS  Google Scholar 

  17. Y. J. Zhao, X. Xiang, M. Wang, H. Y. Wang, Y. Li, J. L. Li, and H. J. Yang, Desalination 512, 115126 (2021). https://doi.org/10.1016/j.desal.2021.115126

    Article  CAS  Google Scholar 

  18. Y. J. Zhao, H. Y. Wang, Y. Li, M. Wang, and X. Xiang, Desalination 493, 114620 (2020). https://doi.org/10.1016/j.desal.2020.114620

    Article  CAS  Google Scholar 

  19. K. V. Chudnenko, Russ. J. Inorg. Chem. 65, 94 (2020). https://doi.org/10.1134/S0036023620010052

    Article  CAS  Google Scholar 

  20. L. Y. Li, S. Kang, Y. B. Bu, Q. Z. Zhou, and J. H. Feng, Glass Phys Chem. 49, 431 (2023). https://doi.org/10.1134/S1087659623600473

    Article  CAS  Google Scholar 

  21. A. L. Voskov, I. A. Kovalev, G. P. Kochanov, A. V. Shokod’ko, A. I. Ogarkov, S. S. Strel’nikova, A. S. Chernyavskii, and K. A. Solntsev, Inorg. Mater. 58, 509 (2022). https://doi.org/10.1134/S0020168522050119

    Article  CAS  Google Scholar 

  22. C. Monnin and M. Dubois, J. Chem. Eng. Data 50, 1109 (2005). https://doi.org/10.1021/je0495482

    Article  CAS  Google Scholar 

  23. C. Horacio, R. Crovetto, and R. Fernández-Prini, J. Solution Chem. 8, 897 (1979). https://doi.org/10.1007/BF00644886

    Article  Google Scholar 

  24. D. M. Oliveira, A. J. Bredt, T. C. Miller, S. A. Corcelli, and D. Ben-Amotz, J. Phys. Chem. B 125, 1439 (2021).https://doi.org/10.1021/acs.jpcb.0c10564

    Article  PubMed  CAS  Google Scholar 

  25. H. W. Ge, H. Y. Wang and M. Wang, CIESC J. 70, 4123 (2019).

    CAS  Google Scholar 

  26. L. M. William, S. Ruth, and V J. Ernest, J. Chem. Eng. Data 9, 1467 (1964). https://doi.org/10.1021/je60021a011

    Article  Google Scholar 

Download references

Funding

The authors gratefully thank the National Natural Science Foundation of China (grant no. U20A20138) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. W. Ge or M. Wang.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z.F., Ge, H.W., Zhao, Y.J. et al. Solubility and Thermodynamic Analysis of Lithium Hydroxide in Lye System. Russ. J. Inorg. Chem. 68, 1972–1979 (2023). https://doi.org/10.1134/S0036023623602714

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602714

Keywords:

Navigation