Skip to main content
Log in

A Kinetic Investigation of Hg(II) Catalyzed Cyanide Substitution from [Ru(CN)6]4– by Isoniazid

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetics of Hg(II) accelerated substitution of cyanide with isoniazid (INH) from [Ru(CN)6]4– was investigated via measurement of the rise in absorbance at 502 nm. Employing the pseudo-first-order condition, the reaction’s advancement has been examined as an indicator of [Hg(II)], pH, [INH], \([{\text{Ru(CN)}}_{6}^{{4 - }}]\), temperature, and ionic strength. The findings demonstrate that [Hg(II)] and pH are the crucial factors that substantially affect the reaction rate. INH interacts with [Ru(CN)6]4– in a 1 : 1 ratio. At low concentrations, the reaction is first-order dependent on \([{\text{Ru}}\left( {{\text{CN}}} \right)_{6}^{{4 - }}]\), whereas at higher concentrations, it follows fractional order kinetics. In the analyzed ranges of [INH], the reaction reveals first-order kinetics. The linear decline in reaction rate with the addition of electrolytes signifies a negative salt effect. With rising [Hg(II)], complicated behavior in the reaction rate was noticed. The calculated value of activation parameters viz. entropy of activation, enthalpy of activation, and energy of activation are –279.89, 276.35, and 278.99 kJ M–1, respectively. A relevant mechanistic scheme that is consistent with the experimental data and is endorsed by activation parameters has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

DATA AVAILABILITY

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. R. M. Naik, A. Srivastava, and A. Asthana, J. Iran. Chem. Soc. 5, 29 (2008).

    Article  CAS  Google Scholar 

  2. T. Iioka, S. Takahashi, Y. Yoshida, Y. Matsumura, S. Hiraoka, and H. Sato, J. Comput. Chem. 40, 279 (2019).

    Article  PubMed  CAS  Google Scholar 

  3. R. M. Naik, A. Srivastava, A. K. Verma, S. B. S. Yadav, R. Singh, and S. Prasad, Bioinorg. React. Mech. 6, 185 (2007).

    CAS  Google Scholar 

  4. A. Srivastava, V. Sharma, A. Prajapati, N. Srivastava, and R. M. Naik, Chem. Chem. Technol. 13, 275 (2019).

    Article  CAS  Google Scholar 

  5. S. Prasad, R. M. Naik, and A. Srivastava, Spectrochim. Acta, Part A 70, 958 (2008).

    Article  Google Scholar 

  6. M. M. Graciani, M. A. Rodríguez, and M. L. Moyá, Int. J. Chem. Kinet. 29, 377 (1997).

    Article  Google Scholar 

  7. R. M. Naik, R. K. Tewari, P. K. Singh, A. K. Tiwari, and S. Prasad, Trans. Met. Chem. 30, 968 (2005).

    Article  CAS  Google Scholar 

  8. A. Singh and A. Singh, Prog. Reac. Kinet. Mech. 38, 105 (2013).

    Article  CAS  Google Scholar 

  9. A. Srivastava, V. K. Singh, N. Srivastava, B. Yaseen, C. Gangwar, and R. M. Naik, Russ. J. Phys. Chem. A 97, 587 (2023).

    Article  CAS  Google Scholar 

  10. A. Srivastava, R. M. Naik, J. Rai, and I. Kumar, J. Surfact. Deterg. 26, 13 (2023).

    Article  CAS  Google Scholar 

  11. A. Srivastava, R. M. Naik, J. Rai, and A. Asthana, Russ. J. Phys. Chem. 95, 2545 (2021).

    Article  CAS  Google Scholar 

  12. A. L. Tokman, L. A. Gentil, and J. A. Olabe, Polyhedron 8, 2091 (1989).

    Article  CAS  Google Scholar 

  13. L. M. Baraldo, P. Forlano, A. R. Parise, and L. A. Olabe, Coord. Chem. Rev. 219, 881 (2001).

    Article  Google Scholar 

  14. R. M. Naik, A. K. Verma, A. Agarwal, and A. Asthna, Trans. Met. Chem. 34, 209 (2009).

    Article  CAS  Google Scholar 

  15. R. M. Naik, A. Agarwal, A. K. Verma, S. B. S. Yadav, and B. Kumar, Int. J. Chem. Kinet. 41, 215 (2009).

    Article  CAS  Google Scholar 

  16. A. Srivastava, R. Rastogi, and R. M. Naik, J. Iran. Chem. Soc. 17, 2327 (2020).

    Article  Google Scholar 

  17. Y. Baran, Trans. Met. Chem. 25, 41 (2000).

    Article  CAS  Google Scholar 

  18. R. M. Naik, R. Singh, and A. Asthana, Int. J. Chem, Kinet. 43, 21 (2011).

    Article  CAS  Google Scholar 

  19. R. Rastogi, A. Srivastava, and R. M. Naik, J. Dispers. Sci. Technol. 41, 1045 (2020).

    Article  CAS  Google Scholar 

  20. B. R. Mchaki, F. X. Mgaya, and P. P. Kunambi, Bull. Natl. Res. Cent. 47, 23 (2023).

    Article  Google Scholar 

  21. J. Li, X. Cai, Y. Chen, C. Wang, and Z. Jiao, Expert Rev. Clin. Pharmacol. 16, 467 (2023).

    Article  PubMed  Google Scholar 

  22. J. T. Marquês, C. Frazão de Faria, D. Reis, M. Machado, S. Santos, M. S. Santos, M. Viveiros, F. Martins, and R. F. M. de Almeida, Front. Pharmacol. 13, 868545 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. D. K. Tolulope, G. E. Jackson, and M. R. Caira, S. Afr. J. Chem. 76, 65 (2022).

    Article  CAS  Google Scholar 

  24. R. S. Yalgudre and G. S. Gokavi, Ind. Eng. Chem. Res. 51, 5135 (2012).

    Article  CAS  Google Scholar 

  25. P. Jeyaraman, S. Michael, and R. Natrajan, Struct. Chem. 34, 1115 (2023).

    Article  CAS  Google Scholar 

  26. I. D. Aguiar, A. Tavares, A. C. Roveda, A. C. da Silva, L. B. Marino, E. O. Lopes, F. R. Pavan, L. G. Lopes, and D. W. Franco, Eur. J. Pharm. Sci. 70, 45 (2015).

    Article  PubMed  Google Scholar 

  27. R. Kroth, M. Cristiano Monteiro, J. Conte, D. Fretes Argenta, B. R. Amaral, B. Szpoganicz, and T. Caon, Int. J. Pharm. 590, 119924 (2020).

    Article  PubMed  CAS  Google Scholar 

  28. N. A. Smith, P. Zhang, S. E. Greenough, N. D. Horbury, G. J. Clarkson, D. McFeely, A. Habtemariam, L. Salassa, V. G. Stavros, C. G. Dowson, and P. J. Sadler, Chem. Sci. 8, 395 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. R. A. Bernhoft, J. Environ. Publ. Health 2012, 460508 (2012).

    Article  Google Scholar 

  30. E. J. Martinez-Finley and M. Aschner, Curr. Environ. Health. Rep. 1, 163 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. A. Agarwal, A. K. Verma, M. Yoshida, R. M. Naik, and S. Prasad, RSC Adv. 10, 25100 (2020).

  32. G. P. Pandey, A. K. Singh, S. Prasad, L. Deshmukh, A. Asthana, S. B. Mathew, and M. Yoshida, Microchem. J. 128, 55 (2016).

    Article  CAS  Google Scholar 

  33. S. Prasad, J. Anal. Chem. 60, 581 (2005).

    Article  CAS  Google Scholar 

  34. A. Srivastava, R. Singh, N. Srivastava, and Manjusha, J. Res. Pharm. 27, 299 (2023).

    CAS  Google Scholar 

  35. A. Srivastava, N. Srivastava, K. Srivastava, R. M. Naik, and A. Srivastava, Russ. J. Phys. Chem. A 96, 3082 (2022).

    Article  CAS  Google Scholar 

  36. R. Yadav, I. Kumar, and R. M. Naik, J. Serb. Chem. Soc. 86, 507 (2021).

    Article  CAS  Google Scholar 

  37. J. Khan, M. I. Zaman, A. Niaz, S. Z. Khan, and A. Rab, Inorg. Chem. Commun. 108, 107505 (2019).

    Article  CAS  Google Scholar 

  38. A. Srivastava, V. Sharma, V. K. Singh, and K. Srivastava, J. Mex. Chem. Soc. 66, 57 (2022).

    CAS  Google Scholar 

  39. A. Srivastava and K. Srivastava, Phys. Chem. Res. 10, 283 (2022).

    CAS  Google Scholar 

  40. A. Bellomo, D. de Marco, and A. Casale, Talanta 22, 197 (1995).

    Article  Google Scholar 

  41. V. Belevantsev and I. Mironov, Koord. Khim. 5, 27 (1979).

    CAS  Google Scholar 

  42. M. T. Beck, in Proceedings of the 21st Coordination Chemistry Conference, Calcutta, India, 1979 (Pergamon, Oxford, 1971), p. 31. https://doi.org/10.1016/B978-0-08-023942-2.50014-6

Download references

Funding

We did not receive any specific grant for this research from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhey Mohan Naik.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Srivastava, A., Pandey, P.K. et al. A Kinetic Investigation of Hg(II) Catalyzed Cyanide Substitution from [Ru(CN)6]4– by Isoniazid. Russ. J. Phys. Chem. 97, 3268–3275 (2023). https://doi.org/10.1134/S0036024424030221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024424030221

Keywords:

Navigation