Skip to main content
Log in

Rate Acceleration of Persulfate Anion-Mediated Oxidation of Hexacyanoruthenate(II) by Anionic Surfactant

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The proposed study aimed to explore the kinetics of [Ru(CN)6]4– oxidation in an sodium lauryl sulfate (SLS) micellar media by persulfate anion (\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\)). The increment in absorbance at 460 nm, which is indicative of the concentration of [Ru(CN)6]3–, was measured to determine the reaction rate. The reaction rate was analyzed as a function of [\({\text{Ru}}({\text{CN}})_{6}^{{4 - }}\)], [SLS], temperature, [\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\)], ionic strength, and pH. The findings indicate that the pH of the medium and [SLS] are the crucial factor that significantly affects the rate of the reaction. The [Ru(CN)6]4– undergoes a 2 : 1 stoichiometric interaction with \({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\). The observed reaction exhibits first-order kinetics with regards to [\({\text{Ru}}({\text{CN}})_{6}^{{4 - }}\)] and [\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\)], within the range of concentrations investigated. The observed invariance in reaction rate upon electrolyte’s introduction is suggestive of a zero salt effect. The electron transfer from [Ru(CN)6]4– to \({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) proceeds via the formation of ion-pair, which leads to the formation of [Ru(CN)6]3–, sulfate ion, and sulfate radical ion. The formation of ion-pair is strengthened by the zero salt effect, while, the comparatively low activation energy and free radical test supports the formation of sulfate radical ion during the course of the reaction. The inclusion of SLS substantially enhances the rate of the process. After reaching its maximum rate, the reaction exhibits a very steady behavior even when the [SLS] is further increased. The observed decrease in SLS CMC could potentially be attributed to the diminished electrostatic repulsion among the anionic surfactant head groups, which is caused by the cationic H+. The outer-sphere electron transfer pathway, via the formation of ion-pair as proposed by us, is further supported by the negative entropy of activation value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

DATA AVAILABILITY

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. V. Gadet, T. Mallah, I. Castro, M. Verdaguer, and P. Veillet, J. Am. Chem. Soc. 114, 9213 (1992).

    Article  CAS  Google Scholar 

  2. V. S. Mironov, E. V. Peresypkina, and K. E. Vostrikova, Molecules 28, 1516 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. S. D. Holmes and G. S. Girolami, J. Am. Chem. Soc. 121, 5593 (1999).

    Article  CAS  Google Scholar 

  4. A. Brown, M. R. Saber, W. V. Heuvel, K. Schulte, A. Soncini, and K. R. Dunbar, Inorg. Chem. 56, 1031 (2017).

    Article  PubMed  CAS  Google Scholar 

  5. T. Shinga, N. Mihara, and M. Nihei, Coord. Chem. Rev. 472, 214763 (2022).

    Article  Google Scholar 

  6. E. A. Seddon and K. Seddon, in Topics in Inorganic and General Chemistry, Ed. by R. J. H. Clark (Elsevier, Amsterdam, 1984), p. 19.

    Google Scholar 

  7. F. M. Crean and K. Schug, Inorg. Chem. 23, 853 (1984).

    Article  CAS  Google Scholar 

  8. J. Bendix, P. Steenberg, and I. Sotofte, Inorg. Chem. 42, 4510 (2003).

    Article  PubMed  CAS  Google Scholar 

  9. S. Eller and R. D. Fischer, Inorg. Chem. 29, 1289 (1990).

    Article  CAS  Google Scholar 

  10. A. Volger, W. Losse, and H. Kunkely, Chem. Commun., 187 (1979).

  11. K. W. Hicks and G. A. Chappelle, Inorg. Chem. 19, 1623 (1980).

    Article  CAS  Google Scholar 

  12. F. Juni, M. J. K. Bashir, Z. Haider Jaffari, S. Sethupathi, W. C. Wong, and J. Zhao, Separations 10, 154 (2023).

    Article  CAS  Google Scholar 

  13. X. Long, J. Luo, and Z. Zhong, Front. Environ. Sci. Eng. 17, 113 (2023).

    Article  CAS  Google Scholar 

  14. S. Sonawane, M. P. Rayaroth, V. K. Landge, K. Fedorov, and G. Boczkaj, Curr. Opin. Chem. Eng. 37, 100839 (2022).

    Article  Google Scholar 

  15. D. A. House, Chem. Rev. 62, 185 (1962).

    Article  CAS  Google Scholar 

  16. N. Chen, D. Lee, H. Kang, D. Cha, J. Lee, and C. Lee, J. Environ. Chem. Eng. 10, 107654 (2022).

    Article  CAS  Google Scholar 

  17. B. Liu, B. Huang, Z. Wang, L. Tang, C. Ji, C. Zhao, L. Feng, and Y. Feng, J. Environ. Chem. Eng. 11, 109586 (2023).

    Article  CAS  Google Scholar 

  18. Y. Li, L. D. Liu, L. Liu, Y. Liu, H. W. Zhang, and X. Han, J. Mol. Catal. A 411, 264 (2016).

    Article  CAS  Google Scholar 

  19. C. Liang, C. F. Huang, N. Mohanty, and R. M. Kurakalva, Chemosphere 73, 1540 (2008).

    Article  PubMed  CAS  Google Scholar 

  20. M. Ahmadi, J. Behin, and A. R. Mahnam, J. Saudi Chem. Soc. 20, 644 (2016).

    Article  CAS  Google Scholar 

  21. U. Furholz and A. Haim, Inorg. Chem. 26, 3243 (1987).

    Article  Google Scholar 

  22. A. J. Miralles, R. E. Armstrong, and A. Haim, J. Am. Chem. Soc. 99, 1416 (1977).

    Article  CAS  Google Scholar 

  23. R. M. Naik, A. Srivastava, A. K. Tiwari, S. B. S. Yaday, and A. K. Verma, J. Iran. Chem. Soc. 4, 63 (2007).

    Article  CAS  Google Scholar 

  24. R. M. Naik, A. Srivastava, A. K. Verma, S. B. S. Yadav, R. Singh, and S. Prasad, Bioinorg. React. Mech. 6, 185 (2007).

    CAS  Google Scholar 

  25. A. Srivastava, R. M. Naik, J. Rai, and A. Asthana, Russ. J. Phys. Chem. A 95, 2545 (2021).

    Article  CAS  Google Scholar 

  26. S. Prasad, R. M. Naik, and A. Srivastava, Spectrochim. Acta, Part A 70, 958 (2008).

    Article  Google Scholar 

  27. A. Srivastava, V. Sharma, A. Prajapati, N. Srivastava, and R. M. Naik, Chem. Chem. Technol. 13, 275 (2019).

    Article  CAS  Google Scholar 

  28. A. Srivastava, V. Sharma, V. K. Singh, and K. Srivastava, J. Mex. Chem. Soc. 66, 57 (2022).

    CAS  Google Scholar 

  29. B. Das, B. Kumar, and W. Begum, Chem. Africa 5, 459 (2022).

    Article  CAS  Google Scholar 

  30. M. A. Zahed, M. A. Matinvafa, and A. Azari, Discov. Water 5, 2 (2022).

    Google Scholar 

  31. D. C. Mohanambigai and D. Jenif, SPAST Abstracts 1, 1 (2021).

    Google Scholar 

  32. M. A. Karimi, M. A. Mozaheb, and A. Hatefi-Mehrjardi, J. Anal. Sci. Technol. 6, 1 (2015).

    Article  Google Scholar 

  33. S. Shah, S. K. Chatterjee, and A. Bhattarai, J. Surfact. Deterg. 19, 201 (2016).

    Article  CAS  Google Scholar 

  34. S. Tiwari, C. Mall, and P. P. Solanki, Surf. Interfaces 18, 100427 (2020).

    Article  CAS  Google Scholar 

  35. A. Motin, M. A. Hafiz Mia, and A. K. M. Nasimul Islam, J. Saudi Chem. Soc. 19, 172 (2015).

    Article  Google Scholar 

  36. G. B. Dutt, J. Stam, and F. C. de Schrvver, Langmuir 13, 1957 (1997).

    Article  CAS  Google Scholar 

  37. B. Sieklucka, Prog. React. Kinet. Mech. 24, 165 (1999).

    Article  CAS  Google Scholar 

  38. A. D. H. Machado, Z. N. Rocha, and E. T. Founi, J. Photochem. Photobiol. A 88, 85 (1995).

    Article  CAS  Google Scholar 

  39. A. Srivastava, R. M. Naik, and R. Rastogi, J. Iran. Chem. Soc. 17, 2327 (2020).

    Article  Google Scholar 

  40. C. A. Chimatadar, K. Thabaj, and S. T. Nandibewoor, Ind. J. Chem. 46A, 1090 (2007).

    CAS  Google Scholar 

  41. D. Rehm and A. Weller, Isr. J. Chem. 8, 259 (1970).

    Article  CAS  Google Scholar 

  42. G. B. Schuster, J. Am. Chem. Soc. 101, 5851 (1979).

    Article  CAS  Google Scholar 

  43. A. W. H. Aten, K. P. Louwrier, P. Coppens, H. A. Kok, A. M. Roos, E. Kriek, A. Hillege, L. Vollbracht, and F. Hartog, J. Inorg. Nucl. Chem. 3, 296 (1956).

    Article  CAS  Google Scholar 

  44. P. Bhargava and K. S. Gupta, Ind. J. Chem. 32A, 201 (1993).

    CAS  Google Scholar 

  45. P. K. Sen, N. Gani, and B. Pal, Ind. Eng. Chem. Res. 52, 2803 (2013).

    Article  CAS  Google Scholar 

  46. A. Acharjee, A. Rakshit, S. Chowdhury, S. Malik, M. K. Barman, M. A. Ali, and B. Saha, J. Mol. Liq. 277, 360 (2019).

    Article  CAS  Google Scholar 

  47. A. Srivastava, M. K. Goswami, R. K. Dohare, N. Srivastava, and K. Srivastava, Int. J. Chem. Kinet. 55, 431 (2023).

    Article  CAS  Google Scholar 

  48. A. Ghosh, P. Das, D. Saha, P. Sar, S. K. Ghosh, and B. Saha, Res. Chem. Intermed. 42, 2619 (2016).

    Article  CAS  Google Scholar 

  49. R. Jimenez, E. Bueno, I. Cano, and E. Corbacho, Int. J. Chem. Kinet. 26, 627 (2004).

    Article  Google Scholar 

Download references

Funding

We did not receive any specific grant for this research from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Srivastava.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Srivastava, N. & Singh, V.K. Rate Acceleration of Persulfate Anion-Mediated Oxidation of Hexacyanoruthenate(II) by Anionic Surfactant. Russ. J. Phys. Chem. 97, 3259–3267 (2023). https://doi.org/10.1134/S0036024424030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024424030038

Keywords:

Navigation