Skip to main content
Log in

Rate Enhancement of Cu(II) Catalyzed L-Glutamic Acid Oxidation by Hexacyanoferrate(III) via Micelle Encapsulation

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The proposed study aimed to explore the kinetics of L-glutamic acid (Glu) oxidation in a micellar media of cetylpyridinium chloride (CPC) by hexacyanoferrate(III) {HCF(III)}. The reduction in absorbance at 420 nm, which is indicative of the concentration of HCF(III), was measured to determine the reaction rate. Applying the pseudo-first-order state, The reaction’s progression was analyzed as an indicator of [HCF], temperature, [Glu], [Cu(II)], [CPC], ionic strength, and [OH]. The findings indicate that the [CPC] is the crucial factor that significantly affects the rate of the reaction. The HCF(III) undergoes a 2 : 1 stoichiometric interaction with Glu and has a first-order reliance on [HCF(III)]. The observed reaction exhibits fractional-first-order kinetics with regards to [Glu], [OH], and Cu(II), within the range of concentrations investigated. The observed linear augmentation in reaction rate upon electrolyte’s introduction is suggestive of a positive salt effect. The inclusion of CPC substantially enhances the catalytic activity of the process. After reaching its maximum rate, the reaction exhibits a very steady behavior even when the [CPC] is further increased. The observed decrease in CPC CMC could potentially be attributed to the diminished electrostatic repulsion among the cationic surfactant headgroups, which is caused by the anionic [Cu(OH)4]2–, OH, and HCF(III) species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

DATA AVAILABILITY

The datasets generated or analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

  1. K. Sharanabasamma, M. A. Angadi, and S. M. Tuwar, Open Catal. J. 4, 1 (2011).

    Article  CAS  Google Scholar 

  2. H. S. Singh, B. Singh, A. Gupta, and A. K. Singh, Oxid. Commun. 22, 146 (1999).

    CAS  Google Scholar 

  3. A. Goel and R. Sharma, J. Chem. Eng. Mater. Sci. 3, 1 (2012).

    CAS  Google Scholar 

  4. A. Nowdari, K. K. Adari, N. R. Gollapalli, and V. Parvataneni, E-J. Chem. 6, 93 (2009).

  5. A. Goel and S. Sharma, Trans. Met. Chem. 35, 549 (2010).

    Article  CAS  Google Scholar 

  6. A. Gupta and A. Pandey, Ind. J. Sci. Res. 13, 66 (2017).

    CAS  Google Scholar 

  7. P. Sharma, R. Sailani, A. Meena, and C. L. Khandelwal, J. Chem. Res. 44, 295 (2020).

    Article  CAS  Google Scholar 

  8. E. Pandey, N. Grover, N. Kambo, and S. K. Uphadyay, Ind. J. Chem. 43A, 1183 (2004).

    Google Scholar 

  9. R. M. Naik, A. Srivastava, and A. K. Verma, Turk. J. Chem. 32, 495 (2008).

    CAS  Google Scholar 

  10. J. Bagalkoti and S. T. Nandibewoor, Monatsh. Chem. 150, 469 (2019).

    Article  Google Scholar 

  11. B. H. Asghar, H. M. Altas, and A. J. Fawzi, J. Saudi Chem. Soc. 21, 887 (2017).

    Article  CAS  Google Scholar 

  12. G. Tazwar and V. Devra, SN Appl. Sci. 1, 729 (2019).

    Google Scholar 

  13. F. R. Duke and V. C. Bulgrin, J. Phys. Chem. 79, 2323 (1975).

    Article  CAS  Google Scholar 

  14. S. M. Olusanya and E. O. Odebunm, Pac. J. Sci. Technol. 12, 328 (2011).

    Google Scholar 

  15. K. Mádlo, A. Hasned, and J. Vepřek-Šiška, Collect. Czech. Chem. Commun. 41, 7 (1976).

    Article  Google Scholar 

  16. Pooja, D. Singh, S. Aggarwal, V. K. Singh, R. Pratap, A. K. Mishra, and A. K. Tiwari, Spectrochim. Acta, Part A 244, 118808 (2021).

    Article  CAS  Google Scholar 

  17. R. M. Naik, A. Srivastava, A. K. Tiwari, S. B. S. Yaday, and A. K. Verma, J. Iran. Chem. Soc. 4, 63 (2007).

    Article  CAS  Google Scholar 

  18. R. M. Naik, A. Srivastava, A. K. Verma, S. B. S. Yadav, R. Singh, and S. Prasad, Bioinorg. React. Mech. 6, 185 (2007).

    CAS  Google Scholar 

  19. N. Saini, R. Varshney, A. K. Tiwari, A. Kaul, M. Allard, M. P. S. Ishar, and A. K. Mishra, Dalton Trans. 42, 4994 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. A. Srivastava, R. M. Naik, J. Rai, and A. Asthana, Russ. J. Phys. Chem. A 95, 2545 (2021).

    Article  CAS  Google Scholar 

  21. A. Singh and A. Singh, Prog. React. Kinet. Mech. 38, 105 (2013).

    Article  CAS  Google Scholar 

  22. R. M. Naik, R. K. Tewari, P. K. Singh, A. K. Tiwari, and S. Prasad, Trans. Met. Chem. 30, 968 (2005).

    Article  CAS  Google Scholar 

  23. S. Prasad, R. M. Naik, and A. Srivastava, Spectrochim. Acta, Part A 70, 958 (2008).

    Article  ADS  Google Scholar 

  24. A. Srivastava, V. Sharma, A. Prajapati, N. Srivastava, and R. M. Naik, Chem. Chem. Technol. 13, 275 (2019).

    Article  CAS  Google Scholar 

  25. A. Srivastava, V. Sharma, V. K. Singh, and K. Srivastava, J. Mex. Chem. Soc. 66, 57 (2022).

    CAS  Google Scholar 

  26. B. Das, B. Kumar, and W. Begum, Chem. Africa 5, 459 (2022).

    Article  CAS  Google Scholar 

  27. M. A. Zahed, M. A. Matinvafa, and A. Azari, Discov. Water 5, 2 (2022).

    Google Scholar 

  28. D. C. Mohanambigai and D. Jenif, SPAST Abstracts 1, 1 (2021).

    Google Scholar 

  29. M. A. Karimi, M. A. Mozaheb, and A. Hatefi-Mehrjardi, J. Anal. Sci. Technol. 6, 1 (2015).

    Article  Google Scholar 

  30. S. Shah, S. K. Chatterjee, and A. Bhattarai, J. Surfact. Deterg. 19, 201 (2016).

    Article  CAS  Google Scholar 

  31. T. Mukhim, J. Dey, S. Das, and K. Ismail, J. Colloid Interface Sci. 350, 511 (2010).

    Article  ADS  PubMed  CAS  Google Scholar 

  32. M. F. Ahmed, M. Abdul Rub, M. T. R. Joy, M. R. Molla, N. Azum, and M. Anamul Hoque, Gels 8, 62 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. A. A. Rafati, H. Gharibi, and H. Iloukhani, Phys. Chem. Liq. 39, 521 (2001).

    Article  CAS  Google Scholar 

  34. S. M. Zourab, E. M. Ezzo, H. J. El Aila, and J. K. J. Salem, J. Dispers. Sci. Technol. 24, 67 (2003).

    Article  CAS  Google Scholar 

  35. A. Srivastava, Manjusha, N. Srivastava, and R. M. Naik, J. Mex. Chem. Soc. 67, 46 (2023).

    Article  CAS  Google Scholar 

  36. M. S. Sudha and B. B. V. Sailaja, Int. J. Res. Anal. Rev. 5, 614 (2018).

    Google Scholar 

  37. P. L. Domingo, B. A. Garc, and J. M. Leal, Can. J. Chem. 68, 228 (1990).

    Article  CAS  Google Scholar 

  38. S. Chowdhury, A. Rakshit, A. Acharjee, A. Ghosh, K. Mahali, and B. Saha, Tenside Surfact. Det. 57, 298 (2020).

    CAS  Google Scholar 

  39. S. Chowdhury, A. Rakshit, A. Acharjee, A. Ghosh, K. Mahali, and B. Saha, J. Mol. Liq. 290, 111247 (2019).

    Article  Google Scholar 

  40. S. Dubey, N. Sharma, and C. L. Khandelwal, Trans. Met. Chem. 28, 176 (2003).

    Article  CAS  Google Scholar 

  41. R. M. Naik and B. Kumar, Dis. Sci. Technol. 33, 647 (2012).

    Article  CAS  Google Scholar 

  42. M. M. Graciani, M. A. Rodríguez, and M. L. Moyá, Int. J. Chem. Kinet. 29, 377 (1997).

    Article  Google Scholar 

  43. C. A. Bunton, F. Nome, F. H. Quina, and L. S. Romsted, Acc. Chem. Res. 24, 357 (1991).

    Article  CAS  Google Scholar 

  44. L. Brinchi, P. D. Profio, R. Germani, G. Savelli, M. Tugliani, and C. A. Bunton, Langmuir 16, 10101 (2000).

    Article  CAS  Google Scholar 

  45. P. Lopez-Cornejo, J. D. Mozo, E. Roldán, M. Domínguez, and F. Sanchez, Chem. Phys. Lett. 352, 33 (2002).

    Article  ADS  CAS  Google Scholar 

  46. D. Piszkiewicz, J. Am. Chem. Soc. 99, 7695 (1977).

    Article  CAS  Google Scholar 

  47. P. K. Sen, N. Gani, and B. Pal, Ind. Eng. Chem. Res. 52, 2803 (2013).

    Article  CAS  Google Scholar 

  48. A. Acharjee, A. Rakshit, S. Chowdhury, S. Malik, M. K. Barman, M. A. Ali, and B. Saha, J. Mol. Liq. 277, 360 (2019).

    Article  CAS  Google Scholar 

  49. A. Ghosh, P. Das, D. Saha, P. Sar, S. K. Ghosh, and B. Saha, Res. Chem. Intermed. 42, 2619 (2016).

    Article  CAS  Google Scholar 

  50. R. Jimenez, E. Bueno, I. Cano, and E. Corbacho, Int. J. Chem. Kinet. 26, 627 (2004).

    Article  Google Scholar 

Download references

Funding

We did not receive any specific grant for this research from any funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Srivastava.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Srivastava, N., Srivastava, K. et al. Rate Enhancement of Cu(II) Catalyzed L-Glutamic Acid Oxidation by Hexacyanoferrate(III) via Micelle Encapsulation. Russ. J. Phys. Chem. 97, 3249–3258 (2023). https://doi.org/10.1134/S0036024424030026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024424030026

Keywords:

Navigation