Skip to main content
Log in

Zinc Tungstate Coupled Fluorinated Titanium Dioxide (ZnWO4/F–TiO2) Composites with Enhanced Photocatalytic Activity

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Herein, zinc tungstate coupled fluorinated titanium dioxide (ZnWO4/F–TiO2) composites were synthesized by microemulsion hydrothermal process with cetyltrimethylammonium bromide/n-hexanol/deionized water/cyclohexane as microemulsion, butyl titanate as titanium source and ammonium fluoride as fluorine source. Methyl orange was used as the target pollutant in sewage to explore the photodegradation performance and recycling performance of the as-prepared specimens. Effect of coupling ratios on the photocatalytic performance was studied. SEM, XRD, UV–Vis Abs, FTIR, BET, and XPS were used to characterize the samples, the performances of photocurrent (it) and electrochemical impedance spectroscopy (EIS) were also investigated and the modification mechanism was systematically studied. The results showed that the optimal loading amount of ZnWO4 was 1 wt %. Under the same conditions, after illumination for 30 min with metal halide, the degradation rates of methyl orange by single TiO2, F–TiO2, and 1% ZnWO4/F–TiO2 reached 54.5, 84, and 93.5% respectively. 1% ZnWO4/F–TiO2 showed an enhanced photocatalytic activity and excellent cycle stability due to the formation of heterostructures which significantly inhibited the recombination of photogenerated electrons and holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

REFERENCES

  1. L. X. Chao, Nat. Environ. Polut. Technol. 16, 133 (2017).

    CAS  Google Scholar 

  2. Z. Yang, B. Li, R. Xia, et al., J. Environ. Manage. 310, (2022).

  3. Y. Huang, F. Mi, J. Wang, et al., Environ. Monit. Assessm. 194, 1 (2022).

    Article  Google Scholar 

  4. M. Arif, G. Liu, B. Yousaf, et al., J. Clean. Prod. 310, (2021).

  5. L. Niu, X. Zhao, Z. Tang, et al., J. Clean. Prod. 297, (2021).

  6. A. L. Johnston, E. Lester, O. Williams, et al., J. Environ. Chem. Eng. 9, 105197 (2021).

  7. C. Hua, J. Wang, X. Dong, et al., Sep. Purif. Technol. 250, (2020).

  8. V. Kumari, S. Yadav, A. Mittal, et al., Inorg. Chem. Commun. 121, (2020).

  9. X. J. Hou, Chem. Eng. J. 348, 262 (2018).

    Article  Google Scholar 

  10. B. Cza, B. Ea, C. Xtab, et al., Sep. Purif. Technol. 2022, 120464 (2022).

  11. F. M. Sanakousar, C. Vidyasagar, V. M. Jiménez-Pérez, et al., Mater. Sci. Semicond. Proces. 140, (2022).

  12. P. V. Nidheesh, C. Couras, A. V. Karim, et al., Chem. Eng. Commun. 209, 390 (2022).

    Article  CAS  Google Scholar 

  13. S. F. Ahmed, M. Mofijur, A. Parisa, et al., Chemosphere 286, 131656 (2022).

  14. Y. Q. Han, L. Lei, C. Yang, et al., Chin. J. Appl. Ecol. 31, 333 (2020).

    Google Scholar 

  15. H. Chen, W. Ji, M. Gu, et al., J. Mater. Sci.: Mater. Electron. 32, 27564 (2021).

    CAS  Google Scholar 

  16. S. A. Balsamo, S. Sciré, M. Condorelli, et al., J. King Saud Univ. 5, 92 (2022).

    CAS  Google Scholar 

  17. T. S. Kanchana, T. Sivakumar, and P. Venkateswari, J. Mol. Struct. 2022, 133375 (2022).

  18. M. Tang, S. Lu, L. He, et al., Nanomaterials 12, 1345 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. L. Y. Zhang, J. J. Yang, and Y. H. You, RSC Adv. 11, 38654 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  20. T. M. Irine, A. Rathika, S. Gobalakrishnan, et al., Cryst. Res. Technol. 2022, 2100285 (2022).

  21. K. H. Rahman and A. K. Kar, Bull. Mater. Sci. 45, 1 (2022).

    Article  Google Scholar 

  22. X. Xiong, Y. Jin, H. Wang, et al., Mater. Chem. Phys. 281, (2022).

  23. D. Cruz, H. B. Ortiz-Oliveros, R. M. Flores-Espinosa, et al., J. King Saud. Univ.-Sci. 34, 101966 (2022).

  24. T. B. T. Dao, T. T. L. Ha, T. Do Nguyen, et al., Chemosphere 280, (2021).

  25. Z. U. Rehman, M. Bilal, J. Hou, et al., Molecules 27, 2069 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. N. Qutub, P. Singh, S. Sabir, et al., Sci. Rep. 12, 1 (2022).

    Article  Google Scholar 

  27. S. Qin, L. Shui, B. Osuagwu, et al., Chem. Open 11, e202200010 (2022).

  28. H. B. Xia, X. T. Xu, D. Li, J. Alloys Compd. 914, (2022).

  29. H. Feng, Y. Li, D. Luo, et al., Chin. J. Catal. 37, 855 (2016).

    Article  CAS  Google Scholar 

  30. X. Luo, W. Lai, and X. Liu, Chem. Sel. 6, 39 (2021).

    CAS  Google Scholar 

  31. K. Qureshi, M. Z. Ahmad, I. A. Bhatti, et al., J. Mol. Liq. 285, 789 (2019).

    Article  Google Scholar 

  32. W. Alrashedi, H. Kochkar, G. Berhault, et al., J. Photochem. Photobiol. A 428, (2022).

  33. H. Heffner, R. Faccio, and I. López-Corral, J. Phys. Chem. Solids 165, (2022).

  34. A. Safeen, K. Safeen, R. Ullah, et al., RSC Adv. 12, 15767 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  35. G. Lu, X. Liu, L. Zhao, et al., Inorg. Chem. Commun. 113, (2020).

  36. J. Lee, J. Hwang, H. Park, et al., Appl. Surf. Sci. 540, (2021).

  37. N. Pugazhenthiran, H. Valdés, R. V. Mangalaraja, et al., Sep. Purif. Technol. 292, (2022).

  38. X. Wei, H. Zhu, J. Xiong, et al., New J. Chem. 45, 17483 (2021).

    Article  CAS  Google Scholar 

  39. L. Li, B. Li, L. Feng, et al., Molecules 26, 3844 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. S. Singh, R. Prajapat, R. A. Rather, et al., Arab. J. Chem. 13, 2171 (2020).

    Article  CAS  Google Scholar 

  41. H. Liu, X. Zhao, H. Shen, et al., CrystEngComm 23, 1336 (2021).

    Article  CAS  Google Scholar 

  42. L. Gigorjeva, D. Millers, J. Grabis, et al., Centr. Eur. J. Phys. 9, 510 (2011).

    ADS  CAS  Google Scholar 

  43. D. Sivaganesh, S. Saravanakumar, V. Sivakumar, et al., Mater. Charact. 159 (2019).

  44. V. Kale, Y. M. Hunge, S. A. Kamble, et al., Mater. Today Commun. 26, (2021).

  45. L. Y. Zhang, Y. L. Han, J. J. Yang, et al., Appl. Surf. Sci. 546, (2021).

  46. J. You, L. Y. Zhang, L. Y. He, et al., Opt. Mater. 131, (2022).

  47. V. V. Fomichev and O. I. Kondratov, Spectrochim. Acta, Part A 50, 1113 (1994).

    Article  ADS  Google Scholar 

  48. L. Midya, A. N. Sarkar, R. Das, et al., Int. J. Biol. Macromol. 164, 3686 (2020).

    Article  Google Scholar 

  49. D. Hao, C. H. Jiang, Z. M. Tang, et al., Chin. J. Mater. Res. 27, 247 (2013).

    CAS  Google Scholar 

  50. J. Zhao, W. Li, X. Li, et al., RSC Adv. 7, 21547 (2017).

    Article  ADS  CAS  Google Scholar 

  51. C. B. Anucha, I. Altin, Z. Byklolu, et al., Nanomaterials 10, 1 (2020).

    Article  Google Scholar 

  52. X. H. Jiang, Y. N. Duan, Y. Tian, et al., Rare Met. 41, 406 (2022).

    Article  CAS  Google Scholar 

  53. L. J. Jiao, J. W. Zhang, Y. M. Shi, J. Shaoguan Univ.: Nat. Sci. 40, 46 (2019).

    Google Scholar 

  54. L. Xie, Z. Yang, W. Xiong, et al., Appl. Surf. Sci. 465, 115 (2019).

    Article  Google Scholar 

  55. G. Zhou, H. Sun, S. Wang, et al., Sep. Purif. Technol. 80, 626 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the Sichuan Science and Technology Plan Project (2023YFG0247), and the Youth Project of Neijiang Normal University (2022QN24).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Yuan Zhang.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, LY., Tang, JJ. et al. Zinc Tungstate Coupled Fluorinated Titanium Dioxide (ZnWO4/F–TiO2) Composites with Enhanced Photocatalytic Activity. Russ. J. Phys. Chem. 97, 3238–3248 (2023). https://doi.org/10.1134/S0036024424010163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024424010163

Keywords:

Navigation