Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-06T20:28:11.696Z Has data issue: false hasContentIssue false

Jet-induced vortices of a row of distributed engines at vertical take-off condition

Published online by Cambridge University Press:  12 February 2024

C. Bai
Affiliation:
College of Engineering, Peking University, Beijing, China Midea Corporate Research Center, Guangdong, China
C. Zhou*
Affiliation:
College of Engineering, Peking University, Beijing, China
*
Corresponding author: C. Zhou; Email: czhou@pku.edu.cn

Abstract

The aerodynamic performance of a wing model with a row of distributed engines are investigated at the vertical take-off condition. The engines are installed near the trailing edge of the wing. During vertical take-off, the jets exit from the engines and impinge perpendicularly to the ground, providing a thrust for the aircraft. Due to the ground effects, complex vortex structures are induced by the jets. The vortices are categorised into the spanwise vortices and the chordwise vortices. The underwing vortices can lead to low-pressure regions on the lower surface of the wing, resulting in an undesirable downward force. The underwing vortex structures are affected by the ratio of the engine distance to the engine diameter ($S/D$). At a small $S/D$ = 1.10, the flow field is dominated by the spanwise vortices; at a large $S/D$ = 2.78, the flow field is dominated by the chordwise vortices. The range and strength of the spanwise vortices are affected by the vortices interaction. Competition mechanism exists between the range and strength effects, which results in the non-linear variation of the wing lift coefficient with engine spacing. The details of the flow physics underneath the wing and its mechanism on the lift of the wing during take-off are investigated.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rajendran, S. and Zack, J. Air taxi service for urban mobility: A critical review of recent developments, future challenges, and opportunities, Transp. Res. E Logist. Transp. Rev., Nov 2020, 143.CrossRefGoogle Scholar
David, P.T., Rafael, A., Bryan, B., et al. Urban Air Mobility Airspace Integration Concepts and Considerations, 2018 Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, 2018.Google Scholar
Fast-Forwarding to a Future of On-Demand Urban Air Transportation, Uber Elevate, 2016.Google Scholar
Lilium, Available from: https://lilium.com/ [Accessed 4 May 2022].Google Scholar
Hyun, D.K., Aaron, T.P. and Phillip, J.A. A review of distributed electric propulsion concepts for air vehicle technology, 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio, 2018.Google Scholar
Chengyuan, L., Georgios, D., Panagiotis, L., et al. Turboelectric distributed propulsion system modelling for hybrid-wing-body aircraft, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, 2012.Google Scholar
Michael, K. Turboelectric distributed propulsion test bed aircraft, Rolling Hills Research Corp, 2015.Google Scholar
Michael, K. Aero-propulsive coupling of an embedded, distributed propulsion system, 33rd AIAA Applied Aerodynamics Conference, Dallas, Texas, 2015.Google Scholar
Perry, A.T., Phillip, J.A. and Michael, K. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system, 2018 AIAA Aerospace Sciences Meeting, Kissimmee, Florida, 2018.CrossRefGoogle Scholar
Jing, Z., Wenwen, K. and Lingyu, Y. Aerodynamic benefits of boundary layer ingestion for distributed propulsion configuration, Aircraft, 2019, 91, (10), pp 12851294.Google Scholar
Perry, A.T., Bretl, T. and Ansell, P.J. Aeropropulsive coupling effects on a general-aviation aircraft with distributed electric propulsion, J Aircr, 2021, 58, (6), pp 13511363.CrossRefGoogle Scholar
Wang, K. and Zhou, Z. Aerodynamic design, analysis and validation of a small blended-wing-body unmanned aerial vehicle, Aerospace, 2022, 9, (1).Google Scholar
Hall, D.K. Distributed propulsion vehicles, 27th International Congress of the Aeronautical Sciences, Nice, France, 2019.Google Scholar
Hall, D.K., Huang, A.C., Uranga, A., Greitzer, E.M., Drela, M. and Sato, S. Boundary Layer Ingestion Propulsion Benefit for Transport Aircraft, J. Propuls. Power, 2017, 33, (5), pp 11181129.CrossRefGoogle Scholar
Jorge, M.B., Andre, R.S. and Diana, F.V. Effect of the Impinging Height of Twin Jets in Tandem Through a Crossflow, 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 2017.Google Scholar
Hirschberg, M.J. Soviet V/STOL aircraft the struggle for a shipborne combat capability, The American Institute of Aeronautics and Astronautics Press, 1997.CrossRefGoogle Scholar
Peter, C., Richard, EK. and Richard, J.M. STOL operation (Transition-in-ground effect): Jet induced effects, The American Institute of Aeronautics and Astronautics Press, 2007.Google Scholar
Knowles, K., Bray, D., Bailey, P.J. and Curtis, P. Impinging jets in cross-flow, J. Aircr., 1993, 30, (6), pp 872878.CrossRefGoogle Scholar
Knowles, K. and Bray, D. Ground vortex formed by impinging jets in crossflow, Aeronaut. J. (1968), 1992, 96, (952), pp 4756.CrossRefGoogle Scholar
Barata, J., Durao, D. and Mcguirk, J. Numerical study of single impinging jets through a crossflow, 27th Aerospace Sciences Meeting, Reno, Nevada, 1989.Google Scholar
Bray, D. and Knowles, K. Numerical modeling of an impinging jet in cross-flow, 26th Joint Propulsion Conference, Orlando, Florida, 1990.CrossRefGoogle Scholar
Chuang, S.H. and Nieh, T.J. Numerical simulation and analysis of three-dimensional turbulent impinging square twin-jet flow field with no-crossflow, Int. J. Numer. Methods Fluids, 2000, 31, (4), pp 475498.3.0.CO;2-Q>CrossRefGoogle Scholar
Aldabbagh, L.B.Y. and Sezai, I. Numerical simulation of three dimensional laminar square twin jet impingement on a flat plate flow structure and heat transfer, Numer. Heat Tr. A-Appl., 2002, 41, (8), pp 835850.CrossRefGoogle Scholar
Ozmen, Y. Confined impinging twin air jets at high Reynolds numbers, Exp. Therm. Fluid Sci., 35, (2), pp 355363.CrossRefGoogle Scholar
Merritt, S., Kalpana, C. and William, V.D. Numerical simulation of a complete SVTOL aircraft in ground effect, International Powered Lift Conference, Santa Clara, California, 1993.Google Scholar
Chaderjian, N., Pandya, S., Ahmad, J. and Murman, S. Parametric time-dependent Navier-Stokes Computations for a YAV-8B Harrier in Ground Effect, 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, Nevada, 2002.CrossRefGoogle Scholar
Pandya, S., Chaderjian, N., Ahmad, J. and Murman, S. Parametric study of a YAV-8B harrier in ground effect using time-dependent Navier-Stokes computations, 20th AIAA Applied Aerodynamics Conference, St. Louis, Missouri, 2002.CrossRefGoogle Scholar
Chaderjian, N., Ahmad, J., Pandya, S. and Murman, S. Progress toward generation of a Navier-Stokes database for a harrier in ground effect, 2002 Biennial International Powered Lift Conference and Exhibit, Williamsburg, Virginia, 2002.CrossRefGoogle Scholar
Buchholz, M. Highlights of the JSF X-35 STOVL jet effects test effort, 2002 Biennial International Powered Lift Conference and Exhibit, Williamsburg, Virginia, 2002.CrossRefGoogle Scholar
Cook, R., Curtis, P. and Fenton, P. State of the art in sub-scale SVTOL hot gas ingestion wind tunnel test techniques, Aerospace Technology Conference and Exposition, Grapevine, Texas, 2005.CrossRefGoogle Scholar
Karman, S. and Wooden, P. CFD modeling of F-35 using hybrid unstructured meshes, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas, 2009.Google Scholar
Parsons, D.S., Levin, D.E., Panteny, D.J., Wilson, P.N., Rask, M.R. and Morris, B.L. The F-35 lightning II: From concept to cockpit, American Institute of Aeronautics and Astronautics Press, 2018.Google Scholar
Bai, C.A. and Zhou, C. Ground effects on the aerodynamics of a wing with slot type distributed propulsion system for VTOL applications, Int. J. Turbo Jet Engines, 2023. (published online).CrossRefGoogle Scholar