Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-28T00:22:01.000Z Has data issue: false hasContentIssue false

Okruginite, Cu2SnSe3, a new mineral from the Ozernovskoe deposit, Kamchatka peninsula, Russia

Published online by Cambridge University Press:  16 October 2023

Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague, Czech Republic
Vladimir V. Kozlov
Affiliation:
IGEM RAS, 35, Staromonetny lane, Moscow, 119017, Russia
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00 Prague, Czech Republic
Chris J. Stanley
Affiliation:
Department of Earth Sciences, Natural History Museum, London SW7 5BD, UK
Ilya A. Shkilev
Affiliation:
JSC “Siberian Mining and Metallurgical Alliance”, Mishennaya 106, Petropavlovsk-Kamchatsky, Kamchatka Territory, 683016, Russia
Sharapat Kudaeva
Affiliation:
Institute of Volcanology and Seismology, Russian Academy of Science, Petropavlovsk-Kamchatsky, 683006, Russia
Filip Košek
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
*
Corresponding author: Anna Vymazalová; Email: anna.vymazalova@geology.cz

Abstract

Okruginite, Cu2SnSe3 is a new mineral discovered from the high-sulfidation epithermal Au Ozernovskoye deposit, Kamchatka peninsula, Russia. It occurs as distinct Se-rich zones in Se-bearing mohite crystals or forms aggregates of small crystals 10–15 μm in size in quartz. In plane-polarised light, okruginite appears brownish grey. Pleochroism and bireflectance are discernible, anisotropy is weak, with rotation tints pale blue-grey to pale grey-brown; it exhibits no internal reflections. Reflectance values of the synthetic analogue of okruginite in air (R1, R2 in %) are: 25.9, 26.5 at 470 nm, 27.5, 26.5 at 546 nm, 27.8, 28.4 at 589 nm and 27.7, 28.4 at 650 nm. Twenty seven electron-microprobe analyses of okruginite give an average composition: Cu 29.48, Sn 28.10, Se 33.40 and S 8.75, total 99.73 wt.%, corresponding to the empirical formula Cu1.99Sn1.02(Se1.82S1.17)Σ2.99 based on 6 atoms; the average of seven analyses on its synthetic analogue is: Cu 23.62, Sn 24.37 and Se 49.09, total 97.08 wt.%, corresponding to Cu1.86Sn1.03Se3.11. The density, calculated on the basis of the empirical formula, is 5.126 g/cm3. The mineral is monoclinic, space group Cc, with a = 6.9906(2), b = 12.0712(4) Å, c = 6.9723(2) Å, β = 109.350(10)°, V = 555.1(2) Å3 and Z = 4. The crystal structure was solved and refined from the powder X-ray-diffraction data of synthetic Cu2SnSe3. Okruginite is the selenium-end member of the Cu2SnS3–Cu2SnSe3 solid solution. The mineral name is in honour of Dr. Victor Mikhailovich Okrugin, a Russian mineralogist, for his contributions to mineralogy and geology of epithermal deposits, in particular of the Au–Ag deposits in Kamchatka.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Bindi, L., Förster, H.J., Grundmann, G., Keutsch, F.N. and Stanley, C.J. (2016) Petříčekite CuSe2, a new member of the marcasite group from the Předbořice Deposit, Central Bohemia Region, Czech Republic. Minerals, 6, 33.CrossRefGoogle Scholar
Bruker AXS (2014) Topas 5, Computing Program. Bruker AXS Gmbh, Karlrsuhe, Germany.Google Scholar
Chen, X., Wada, H., Sato, A. and Mieno, M. (1998) Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3. Journal of Solid State Chemistry, 139, 144151.CrossRefGoogle Scholar
Delgado, J.M., de Delgado G., Diaz, Quintero, M. and Woolley, J.C. (1992) The crystal structure of copper iron selenide, CuFeSe2. Materials Research Bulletin, 27, 367373.CrossRefGoogle Scholar
Delgado, G.E., Mora, A.J., Marcano, G. and Rincón, C. (2003) Crystal structure refinement of the semiconducting compound Cu2SnSe3 from X-ray powder diffraction data. Material Research Bulletin, 38, 19491955.CrossRefGoogle Scholar
Demin, A.G. (2015) Ozernovskoye field as a new promising ore object of Central Kamchatka with complex ores for gold, tungsten, silver and copper. Zoloto i tekhnologii, 1(27), 12 [In Russian]Google Scholar
Hahn, H., Klingen, W., Ness, P. and Schulze, H. (1966) Ternaere Chalkogenide mit Silicium, Germanium und Zinn. Naturwissenschaften, 53, 18.CrossRefGoogle Scholar
ICSD (2023) Inorganic Crystal Structure Database. FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur, Karlsruhe, Germany.Google Scholar
Infante E., Roque, Delgado, J.M. and Lopez Rivera, S.A. (1997) Synthesis and crystal structure of Cu2FeSnSe4, a (I2 II IV VI4) semiconductor. Materials Letters, 33, 6770.CrossRefGoogle Scholar
Knight, K.S. (1992) The crystal structures of CuInSe2 and CuInTe2. Materials Research Bulletin, 27, 161167.CrossRefGoogle Scholar
Kovalenker, V.A. (1983) Mohite, Cu2SnS3, a new sulfide of tin and copper. International Geology Review, 25, 117120. [in Russian]CrossRefGoogle Scholar
Kovalenker, V.A. and Plotinskaya, O.Y. (2005) Te and Se mineralogy of Ozernovskoe and Prasolovskoe epithermal gold deposits, Kuril–Kamchatka volcanic belt. Geochemistry, Mineralogy and Petrology (Sofia), 43, 118124.Google Scholar
Litvinov, A.F., Patoka, M.G. and Markovsky, B.A. (editors) (1999) Map of mineral resources of Kamchatka region, explanatory memorandum and legend. 1 map on 18 sheets, scale 1:500,000. Ministry of Natural Resources of the Russian Federation, Natural Resources Committee of Kamchatka Region and Koryak Autonomous Area, VSEGEI. St Petersburg, Russia.Google Scholar
Marcano, G., Rincón, C., López, S.A., Pérez, G.S., Herrera-Perez, J.L., Mendoza-Alvarez, J.G. and Rodríguez, P. (2011) Raman spectrum of monoclinic semiconductor. Solid State Communications, 151, 8486.CrossRefGoogle Scholar
Moh, G. (1963) Sulphide systems containing Sn. Carnegie Institute Yearbook, 62, 197.Google Scholar
Nomura, T., Maeda, T., Takei, K., Morihama, M. and Wada, T. (2013) Crystal structures and band-gap energies of Cu2Sn(S,Se)3 (0≤ x ≤ 1.0) solid solution. Physica status solidi, 10, 10931097.CrossRefGoogle Scholar
Okrugin, V.M., Vymazalová, A., Kozlov, V.V., Laufek, F., Stanley, C.J. and Shkilev, I.A. (2022) Svetlanaite, SnSe, a new mineral from the Ozernovskoe deposit, Kamchatka peninsula, Russia. Mineralogical Magazine, 86, 234242.CrossRefGoogle Scholar
Onoda, M., Chen, X.A., Sato, A. and Wada, H. (2000) Crystal structure and twinning of monoclinic Cu2SnS3. Materials Research Bulletin, 35, 15631570.CrossRefGoogle Scholar
Palatnik, L.S., Komnik, Yu.F., Belova, E.K. and Adroschenko, L.V. (1961) A group of semiconducting compounds containing Cu and elements from groups IV and VI. Doklady Akademii Nauk SSSR, 137, 6871.Google Scholar
Pekov, I.V., Britvin, S.N., Pletnev, P.A., Chukanov, N.V., Belakovskiy, D.I. and Yapaskurt, V.O. (2021) Ozernovskite, IMA 2021-059. CNMNC Newsletter 63. Mineralogical Magazine, 85, https://doi.org.10.1180/mgm.2021.74Google Scholar
Pekov, I.V., Britvin, S.N., Pletnev, P.A., Yapaskurt, V.O., Belakovskiy, D.I., Chukanov, N.V., Vigasina, M.F. and Ponomarev, A.P. (2022) Rudolfhermannite, IMA 2021-099. CNMNC Newsletter 66. Mineralogical Magazine, 86, https://doi.org/10.1180/mgm.2022.33Google Scholar
Petrenko, I.D. (1999) Gold-silver formation of Kamchatka. St. Petersburg, VSEGEI, 115 pp. [in Russian]Google Scholar
Sharma, B.B, Ayyar, R. and Singh, H. (1977) Stability of the tetrahedral phase in the AI2BIVCVI3 group of compounds. Physica Status Solidi, 40, 691696.CrossRefGoogle Scholar
Spiridonov, E.M., Ivanova Yu.N. and Yapaskurt V.O. (2014) Selenide goldfieldite and solid solutions of fischesserite AuAg3Se - petzite AuAg3Te in ores of the volcanogenic gold Ozernovskoe deposit (Kamchatka). Doklady Earth Sciences, 458, 209221 [in Russian].CrossRefGoogle Scholar
Spiridonov, E.M., Ignatov, A.I. and Shubina, E.V. (1990) The evolution of fahlores from the Ozernovskoe volcanogenic deposit (Kamchatka). Izvestia Academy of Sciences USSR, Geology series, 9, 8294 [in Russian].Google Scholar
Spiridonov, E.M., Filimonov, S.V. and Bryzgalov, I.A. (2009) Solid solutions of fischesserite – naumannite (Ag,Au)2Se in ores of the volcanogenic gold Ozernovskoe deposit (Kamchatka). Doklady Earth Sciences, 425, 391394 [in Russian]CrossRefGoogle Scholar
Strunz, H. and Nickel, E.H. (2001) Strunz Mineralogical Tables, Ninth Edition. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, Germany, 870 pp.Google Scholar
Vymazalová, A., Kozlov, V.V., Laufek, F., Stanley, C.J. and Shkilev, I.A. (2023) Okruginite, IMA 2022-096. CNMNC Newsletter No. 71. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.11.Google Scholar
Supplementary material: File

Vymazalová et al. supplementary material 1

Vymazalová et al. supplementary material
Download Vymazalová et al. supplementary material 1(File)
File 904 Bytes
Supplementary material: File

Vymazalová et al. supplementary material 2

Vymazalová et al. supplementary material
Download Vymazalová et al. supplementary material 2(File)
File 1.6 KB